Содержание
- 1 Теплотехнический расчет конструкции здания
- 1.1 Теплотехнический расчет с примером
- 1.2 Необходимые нормативные документы
- 1.3 Рассчитываемые параметры
- 1.4 Пример. Теплотехнический расчет трехслойной стены без воздушной прослойки
- 1.5 Влияние воздушной прослойки
- 1.6 Теплотехнический расчет ограждающих конструкций зданий
- 1.7 В чем смысл расчета?
- 1.8 Теплотехнические требования
- 1.9 Теплотехнические качества
- 1.10 Задачи теплотехнического расчета
- 1.11 Основные параметры для расчета
- 1.12 Теплотехнический расчет: программа
- 1.13 Теплотехнический расчет: пример расчета для наружных стен
- 1.14 Исходные данные
- 1.15 Комфортные условия
- 1.16 Условия энергосбережения
- 1.17 Толщина утеплителя
- 1.18 Необходимость выполнения расчета
- 1.19 Теплотехнический расчет конструкций: что это такое и как проводится
- 1.20 Задачи проведения процедуры
- 1.21 Теплотехнический расчет – что это
- 1.22 Требования по теплотехническому расчету помещения и сопутствующая документация
- 1.23 Как делать теплотехнический расчет стен дома – основные параметры
- 1.24 Варианты теплового расчета ограждающих конструкций
- 1.25 Что такое теплотехнический расчет и как его выполнить
Теплотехнический расчет с примером
Давным-давно здания и сооружения строились, не задумываясь о том, какими теплопроводными качествами обладают ограждающие конструкции. Другими словами, стены делались просто толстыми. И если вам когда-нибудь случалось быть в старых купеческих домах, то вы могли заметить, что наружные стены этих домов выполнены из керамического кирпича, толщина которых составляет порядка 1,5 метров. Такая толщина кирпичной стены обеспечивала и обеспечивает до сих пор вполне комфортное пребывание людей в этих домах даже в самые лютые морозы.
В настоящее же время все изменилось. И сейчас экономически не выгодно делать стены такими толстыми. Поэтому были придуманы материалы, которые могут ее уменьшить. Одни из них: утеплители и газосиликатные блоки. Благодаря этим материалам, например, толщина кирпичной кладки может быть снижена до 250 мм.
Теперь стены и перекрытия чаще всего делают 2-х или 3-х слойными, одним слоем из которых является материал с хорошими теплоизоляционными свойствами. А для того, чтобы определить оптимальную толщину этого материала, проводится теплотехнический расчет и определяется точка росы.
Как производится расчет по определению точки росы вы можете ознакомиться на следующей странице. Здесь же будет рассмотрен теплотехнический расчет на примере.
Необходимые нормативные документы
Для расчета потребуются два СНиПа, один СП, один ГОСТ и одно пособие:
- СНиП 23-02-2003 (СП 50.13330.2012). «Тепловая защита зданий». Актуализированная редакция от 2012 года [1].
- СНиП 23-01-99* (СП 131.13330.2012). «Строительная климатология». Актуализированная редакция от 2012 года [2].
- СП 23-101-2004. «Проектирование тепловой защиты зданий» [3].
- ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). «Здания жилые и общественные. Параметры микроклимата в помещениях» [4].
- Пособие. Е.Г. Малявина «Теплопотери здания. Справочное пособие» [5].
Скачать СНиПы и СП вы можете здесь, ГОСТ — здесь, а Пособие — здесь.
Рассчитываемые параметры
В процессе выполнения теплотехнического расчета определяют:
- теплотехнические характеристики строительных материалов ограждающих конструкций;
- приведённое сопротивление теплопередачи;
- соответствие этого приведённого сопротивления нормативному значению.
Дальше будут приведен пример теплотехнического расчета без воздушной прослойки.
Пример. Теплотехнический расчет трехслойной стены без воздушной прослойки
Исходные данные
1. Климат местности и микроклимат помещения
Район строительства: г. Нижний Новгород.
Назначение здания: жилое .
Расчетная относительная влажность внутреннего воздуха из условия не выпадения конденсата на внутренних поверхностях наружных ограждений равна — 55% (СНиП 23-02-2003 п.4.3. табл.1 для нормального влажностного режима).
Оптимальная температура воздуха в жилой комнате в холодный период года tint= 20°С (ГОСТ 30494-96 табл.1).
Расчетная температура наружного воздуха text, определяемая по температуре наиболее холодной пятидневки обеспеченностью 0,92 = -31°С (СНиП 23-01-99 табл. 1 столбец 5);
Продолжительность отопительного периода со средней суточной температурой наружного воздуха 8°С равна zht = 215 сут (СНиП 23-01-99 табл. 1 столбец 11);
Средняя температура наружного воздуха за отопительный период tht = -4,1°С (СНиП 23-01-99 табл. 1 столбец 12).
2. Конструкция стены
Стена состоит из следующих слоев:
- Кирпич декоративный (бессер) толщиной 90 мм;
- утеплитель (минераловатная плита), на рисунке его толщина обозначена знаком «Х», так как она будет найдена в процессе расчета;
- силикатный кирпич толщиной 250 мм;
- штукатурка (сложный раствор), дополнительный слой для получения более объективной картины, так как его влияние минимально, но есть.
3. Теплофизические характеристики материалов
Значения характеристик материалов сведены в таблицу.
Примечание (*): Данные характеристики можно также найти у производителей теплоизоляционных материалов.
Расчет
4. Определение толщины утеплителя
Для расчета толщины теплоизоляционного слоя необходимо определить сопротивление теплопередачи ограждающей конструкции исходя из требований санитарных норм и энергосбережения.
4.1. Определение нормы тепловой защиты по условию энергосбережения
Определение градусо-суток отопительного периода по п.5.3 СНиП 23-02-2003:
Примечание: также градусо-сутки имеют обозначение — ГСОП.
Нормативное значение приведенного сопротивления теплопередаче следует принимать не менее нормируемых значений, определяемых по СНИП 23-02-2003 (табл.4) в зависимости от градусо-суток района строительства:
Rreq= a×Dd + b = 0,00035 × 5182 + 1,4 = 3,214м 2 × °С/Вт ,
где: Dd — градусо-сутки отопительного периода в Нижнем Новгороде,
a и b — коэффициенты, принимаемые по таблице 4 (если СНиП 23-02-2003) или по таблице 3 (если СП 50.13330.2012) для стен жилого здания (столбец 3).
4.1. Определение нормы тепловой защиты по условию санитарии
В нашем случае рассматривается в качестве примера, так как данный показатель рассчитывается для производственных зданий с избытками явной теплоты более 23 Вт/м 3 и зданий, предназначенных для сезонной эксплуатации (осенью или весной), а также зданий с расчетной температурой внутреннего воздуха 12 °С и ниже приведенное сопротивление теплопередаче ограждающих конструкций (за исключением светопрозрачных).
Определение нормативного (максимально допустимого) сопротивления теплопередаче по условию санитарии (формула 3 СНиП 23-02-2003):
где: n = 1 — коэффициент, принятый по таблице 6 [1] для наружной стены;
tint = 20°С — значение из исходных данных;
text = -31°С — значение из исходных данных;
Δtn = 4°С — нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимается по таблице 5 [1] в данном случае для наружных стен жилых зданий;
αint = 8,7 Вт/(м 2 ×°С) — коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 [1] для наружных стен.
4.3. Норма тепловой защиты
Из приведенных выше вычислений за требуемое сопротивление теплопередачи выбираем Rreq из условия энергосбережения и обозначаем его теперь Rтр0= 3,214м 2 × °С/Вт .
5. Определение толщины утеплителя
Для каждого слоя заданной стены необходимо рассчитать термическое сопротивление по формуле:
где: δi- толщина слоя, мм;
λi — расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).
1 слой (декоративный кирпич): R1 = 0,09/0,96 = 0,094 м 2 × °С/Вт .
3 слой (силикатный кирпич): R3 = 0,25/0,87 = 0,287 м 2 × °С/Вт .
4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м 2 × °С/Вт .
Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала (формула 5.6 Е.Г. Малявина «Теплопотери здания. Справочное пособие»):
где: Rint = 1/αint = 1/8,7 — сопротивление теплообмену на внутренней поверхности;
Rext = 1/αext = 1/23 — сопротивление теплообмену на наружной поверхности, αext принимается по таблице 14 [5] для наружных стен;
ΣRi = 0,094 + 0,287 + 0,023 — сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м 2 ·°С/Вт
Толщина утеплителя равна (формула 5,7 [5]):
где: λут — коэффициент теплопроводности материала утеплителя, Вт/(м·°С).
Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм (формула 5.8 [5]):
где: ΣRт,i — сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м 2 ·°С/Вт.
Из полученного результата можно сделать вывод, что
R = 3,503м 2 × °С/Вт > Rтр0 = 3,214м 2 × °С/Вт → следовательно, толщина утеплителя подобрана правильно.
Влияние воздушной прослойки
В случае, когда в трехслойной кладке в качестве утеплителя применяются минеральная вата, стекловата или другой плитный утеплитель, необходимо устройство воздушной вентилируемой прослойки между наружной кладкой и утеплителем. Толщина этой прослойки должна составлять не менее 10 мм, а желательно 20-40 мм. Она необходима для того, чтобы осушать утеплитель, который намокает от конденсата.
Данная воздушная прослойка является не замкнутым пространством, поэтому в случае ее наличия в расчете необходимо учитывать требования п.9.1.2 СП 23-101-2004, а именно:
а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью (в нашем случае — это декоративный кирпич (бессер)), в теплотехническом расчете не учитываются;
б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи αext = 10,8 Вт/(м°С).
Примечание: влияние воздушной прослойки учитывается, например, при теплотехническом расчете пластиковых стеклопакетов.
Теплотехнический расчет ограждающих конструкций зданий
Теплотехнический расчет позволяет определить минимальную толщину ограждающих конструкций для того, чтобы не было случаев перегрева или промерзания в процессе эксплуатации строения.
Ограждающие конструктивные элементы отапливаемых общественных и жилых зданий, за исключением требований устойчивости и прочности, долговечности и огнестойкости, экономичности и архитектурного оформления, должны отвечать в первую очередь теплотехническим нормам. Выбирают ограждающие элементы в зависимости от конструктивного решения, климатологических характеристик района застройки, физических свойств, влажно-температурного режима в здании, а также в соответствии с требованиями сопротивления теплопередаче, воздухонипроницанию и паропроницанию.
В чем смысл расчета?
- Если во время расчета стоимости будущего строения учитывать лишь прочностные характеристики, то, естественно, стоимость будет меньше. Однако это видимая экономия: впоследствии на обогрев помещения уйдет значительно больше средств.
- Грамотно подобранные материалы создадут в помещении оптимальный микроклимат.
- При планировке системы отопления также необходим теплотехнический расчет. Чтобы система была рентабельной и эффективной, необходимо иметь понятие о реальных возможностях здания.
Теплотехнические требования
Важно, чтобы наружные конструкции соответствовали следующим теплотехническим требованиям:
- Имели достаточные теплозащитные свойства. Другими словами, нельзя допускать в летнее время перегрева помещений, а зимой – излишних потерь тепла.
- Разность температур воздуха внутренних элементов ограждений и помещений не должна быть выше нормативного значения. В противном случае может произойти чрезмерное охлаждение тела человека излучением тепла на данные поверхности и конденсация влаги внутреннего воздушного потока на ограждающих конструкциях.
- В случае изменения теплового потока температурные колебания внутри помещения должны быть минимальные. Данное свойство называется теплоустойчивостью.
- Важно, чтобы воздухонепроницаемость ограждений не вызывала сильного охлаждения помещений и не ухудшала теплозащитные свойства конструкций.
- Ограждения должны иметь нормальный влажностный режим. Так как переувлажнение ограждений увеличивает потери тепла, вызывает в помещении сырость, уменьшает долговечность конструкций.
Чтобы конструкции соответствовали вышеперечисленным требованиям, выполняют теплотехнический расчет, а также рассчитывают теплоустойчивость, паропроницаемость, воздухопроницаемость и влагопередачу по требованиям нормативной документации.
Теплотехнические качества
От теплотехнических характеристик наружных конструктивных элементов строений зависит:
- Влажностный режим элементов конструкции.
- Температура внутренних конструкций, которая обеспечивает отсутствие на них конденсата.
- Постоянная влажность и температура в помещениях, как в холодное, так и в теплое время года.
- Количество тепла, которое теряется зданием в зимний период времени.
Итак, исходя из всего перечисленного выше, теплотехнический расчет конструкций считается немаловажным этапом в процессе проектирования зданий и сооружений, как гражданских, так и промышленных. Проектирование начинается с выбора конструкций – их толщины и последовательности слоев.
Задачи теплотехнического расчета
Итак, теплотехнический расчет ограждающих конструктивных элементов осуществляется с целью:
- Соответствия конструкций современным требованиям по тепловой защите зданий и сооружений.
- Обеспечения во внутренних помещениях комфортного микроклимата.
- Обеспечения оптимальной тепловой защиты ограждений.
Основные параметры для расчета
Чтобы определить расход тепла на отопление, а также произвести теплотехнический расчет здания, необходимо учесть множество параметров, зависящих от следующих характеристик:
- Назначение и тип здания.
- Географическое расположение строения.
- Ориентация стен по сторонам света.
- Размеры конструкций (объем, площадь, этажность).
- Тип и размеры окон и дверей.
- Характеристики отопительной системы.
- Количество людей, находящихся в здании одновременно.
- Материал стен, пола и перекрытия последнего этажа.
- Наличие системы горячего водоснабжения.
- Тип вентиляционных систем.
- Другие конструктивные особенности строения.
Теплотехнический расчет: программа
На сегодняшний день разработано множество программ, позволяющих произвести данный расчет. Как правило, расчет осуществляется на основании методики, изложенной в нормативно-технической документации.
Данные программы позволяют вычислить следующее:
- Термическое сопротивление.
- Потери тепла через конструкции (потолок, пол, дверные и оконные проемы, а также стены).
- Количество тепла, требуемого для нагрева инфильтрирующего воздуха.
- Подбор секционных (биметаллических, чугунных, алюминиевых) радиаторов.
- Подбор панельных стальных радиаторов.
Теплотехнический расчет: пример расчета для наружных стен
Для расчета необходимо определить следующие основные параметры:
- tв = 20°C – это температура воздушного потока внутри здания, которая принимается для расчета ограждений по минимальным значениям наиболее оптимальной температуры соответствующего здания и сооружения. Принимается она в соответствии с ГОСТом 30494-96.
- По требованиям ГОСТа 30494-96 влажность в помещении должна составлять 60%, в результате в помещении будет обеспечен нормальный влажностный режим.
- В соответствии с приложением B СНиПа 23-02-2003, зона влажности сухая, значит, условия эксплуатации ограждений – A.
- tн = -34 °C – это температура наружного воздушного потока в зимний период времени, которая принимается по СНиП исходя из максимально холодной пятидневки, имеющей обеспеченность 0,92.
- Zот.пер = 220 суток – это длительность отопительного периода, которая принимается по СНиПу, при этом среднесуточная температура окружающей среды ≤ 8 °C.
- Tот.пер. = -5,9 °C – это температура окружающей среды (средняя) в отопительный период, которая принимается по СНиП, при суточной температуре окружающей среды ≤ 8 °C.
Исходные данные
В таком случае теплотехнический расчет стены будет производиться с целью определения оптимальной толщины панелей и теплоизоляционного материала для них. В качестве наружных стен будут использоваться сэндвич-панели (ТУ 5284-001-48263176-2003).
Комфортные условия
Рассмотрим, как выполняется теплотехнический расчет наружной стены. Для начала следует вычислить требуемое сопротивление теплопередачи, ориентируясь на комфортные и санитарно-гигиенические условия:
n = 1 – это коэффициент, который зависит от положения наружных конструктивных элементов по отношению к наружному воздуху. Его следует принимать по данным СНиПа 23-02-2003 из таблицы 6.
Δt н = 4,5 °C – это нормируемый перепад температуры внутренней поверхности конструкции и внутреннего воздуха. Принимается по данным СНиПа из таблицы 5.
αв = 8,7 Вт/м 2 °C – это теплопередача внутренних ограждающих конструкций. Данные берутся из таблицы 5, по СНиПу.
Подставляем данные в формулу и получаем:
R тр = (1 × (20 – (-34)) : (4,5 × 8,7) = 1,379 м 2 °C/Вт.
Условия энергосбережения
Выполняя теплотехнический расчет стены, исходя из условий энергосбережения, необходимо вычислить требуемое сопротивление теплопередачи конструкций. Оно определяется по ГСОП (градусо-сутки отопительного периода, °C) по следующей формуле:
tв – это температура воздушного потока внутри здания, °C.
Zот.пер. и tот.пер. – это продолжительность (сут.) и температура (°C) периода, имеющего среднесуточную температуру воздуха ≤ 8 °C.
ГСОП = (20 – (-5,9)) ×220 = 5698.
Исходя из условий энергосбережения, определяем R тр методом интерполяции по СНиПу из таблицы 4:
R тр = 2,4 + (3,0 – 2,4)×(5698 – 4000)) / (6000 – 4000)) = 2,909 (м 2 °C/Вт)
Далее, выполняя теплотехнический расчет наружной стены, следует вычислить сопротивление теплопередаче R:
d – это толщина теплоизоляции, м.
l = 0,042 Вт/м°C – это теплопроводность минераловатной плиты.
αн = 23 Вт/м 2 °C – это теплоотдача наружных конструктивных элементов, принимаемый по СНиПу.
R = 1/8,7 + d/0,042+1/23 = 0,158 + d/0,042.
Толщина утеплителя
Толщина теплоизоляционного материала определяется исходя из того, что R = R тр , при этом R тр берется при условиях энергосбережения, таким образом:
2,909 = 0,158 + d/0,042, откуда d = 0,116 м.
Подбираем марку сэндвич-панелей по каталогу с оптимальной толщиной теплоизоляционного материала: ДП 120, при этом общая толщина панели должна составлять 120 мм. Аналогичным образом производится теплотехнический расчет здания в целом.
Необходимость выполнения расчета
Запроектированные на основании теплотехнического расчета, выполненного грамотно, ограждающие конструкции позволяют сократить затраты на отопление, стоимость которого регулярно увеличиваются. К тому же сбережение тепла считается немаловажной экологической задачей, ведь это напрямую связано с уменьшением потребления топлива, что приводит к снижению воздействия негативных факторов на окружающую среду.
Кроме того, стоит помнить о том, что неправильно выполненная теплоизоляция способна привести к переувлажнению конструкций, что в результате приведет к образованию плесени на поверхности стен. Образование плесени, в свою очередь, приведет к порче внутренней отделки (отслаивание обоев и краски, разрушение штукатурного слоя). В особо запущенных случаях может понадобиться радикальное вмешательство.
Очень часто строительные компании в своей деятельности стремятся использовать современные технологии и материалы. Только специалисту под силу разобраться в необходимости применения того или иного материала, как отдельно, так и в совокупности с другими. Именно теплотехнический расчет поможет определиться с наиболее оптимальными решениями, которые обеспечат долговечность конструктивных элементов и минимальные финансовые затраты.
Теплотехнический расчет конструкций: что это такое и как проводится
В климатических условиях северных географических широт для строителей и архитекторов крайне важен верно сделанный тепловой расчет здания. Полученные показатели дадут для проектирования необходимые сведения, в том числе и об используемых материалах для строительства, дополнительных утеплителях, перекрытиях и даже об отделке.
В целом теплорасчет влияет на несколько процедур:
- учет проектировщиками при планировании расположения комнат, несущих стен и ограждений;
- создание проекта отопительной системы и вентиляционных сооружений;
- подбор стройматериалов;
- анализ условий эксплуатации постройки.
Все это связано едиными значениями, полученными в результате расчетных операций. В этой статье мы расскажем, как сделать теплотехнический расчет наружной стены здания, а также приведем примеры использования этой технологии.
Задачи проведения процедуры
Ряд целей актуален только для жилых домов или, напротив, промышленных помещений, но большинство решаемых проблем подходит для всех построек:
- Сохранение комфортных климатических условий внутри комнат. В термин «комфорт» входит как отопительная система, так и естественные условия нагревания поверхности стен, крыши, использование всех источников тепла. Это же понятие включают и систему кондиционирования. Без должной вентиляции, особенно на производстве, помещения будут непригодны для работы.
- Экономия электроэнергии и других ресурсов на отопление. Здесь имеют место следующие значения:
- удельная теплоемкость используемых материалов и обшивки;
- климат снаружи здания;
- мощность отопления.
Крайне неэкономично проводить отопительную систему, которая просто не будет использоваться в должной степени, но зато будет трудна в установлении и дорога в обслуживании. То же правило можно отнести к дорогостоящим стройматериалам.
Теплотехнический расчет – что это
Теплорасчет позволяет установить оптимальную (две границы – минимальная и максимальная) толщину стен ограждающих и несущих конструкций, которые обеспечат длительную эксплуатацию без промерзаний и перегревов перекрытий и перегородок. Иначе говоря, эта процедура позволяет вычислить реальную или предполагаемую, если она проводится на этапе проектирования, тепловую нагрузку здания, которая будет считаться нормой.
В основу анализа входят следующие данные:
- конструкция помещения – наличие перегородок, теплоотражающих элементов, высота потолков и пр.;
- особенности климатического режима в данной местности – максимальные и минимальные границы температур, разница и стремительность температурных перепадов;
- расположенность строения по сторонам света, то есть учет поглощения солнечного тепла, на какое время суток приходится максимальная восприимчивость тепла от солнца;
- механические воздействия и физические свойства строительного объекта;
- показатели влажности воздуха, наличие или отсутствие защиты стен от проникновения влаги, присутствие герметиков, в том числе герметизирующих пропиток;
- работа естественной или искусственной вентиляции, присутствие «парникового эффекта», паропроницаемость и многое другое.
При этом оценка этих показателей должна соответствовать ряду норм – уровню сопротивления теплопередаче, воздухопроницаемости и пр. Рассмотрим их подробнее.
Требования по теплотехническому расчету помещения и сопутствующая документация
Государственные проверяющие органы, руководящие организацией и регламентацией строительства, а также проверкой выполнения техники безопасности, составили СНиП № 23-02-2003, в котором подробно излагаются нормы проведения мероприятий по тепловой защите зданий.
Документ предлагает инженерные решения, которые обеспечат наиболее экономичный расход теплоэнергии, которая уходит на отопление помещений (жилых или промышленных, муниципальных) в отопительный период. Эти рекомендации и требования были разработаны с учетом вентиляции, конверсии воздуха, а также со вниманием к месторасположению точек поступления тепла.
СНиП – это законопроект на федеральном уровне. Региональная документация представлена в виде ТСН – территориально-строительных норм.
Не все постройки входят в юрисдикцию этих сводов. В частности, не проверяются по этим требованиям те строения, которые отапливаются нерегулярно или вовсе сконструированы без отопления. Обязательным теплорасчет является для следующих зданий:
- жилые – частные и многоквартирные дома;
- общественные, муниципальные – офисы, школы, больницы, детские сады и пр.;
- производственные – заводы, концерны, элеваторы;
- сельскохозяйственные – любые отапливаемые постройки с/х назначения;
- складские – амбары, склады.
В тексте документа прописаны нормы для всех тех составляющих, которые входят в теплотехнический анализ.
Требования к конструкциям:
- Теплоизоляция. Это не только сохранение тепла в холодное время года и недопущение переохлаждений, промерзаний, но и защита от перегрева летом. Изоляция, таким образом, должна быть обоюдосторонней – предупреждение влияний извне и отдачи энергии изнутри.
- Допустимое значение перепада температур между атмосферой внутри здания и терморежимом внутренней части ограждающих конструкций. Это приведет к скоплению конденсата на стенах, а также к негативному влиянию на здоровье людей, находящихся в помещении.
- Теплоустойчивость, то есть температурная стабильность, недопущение резких перемен в нагреваемом воздухе.
- Воздухопроницаемость. Здесь важен баланс. С одной стороны, нельзя допустить остывания постройки из-за активной отдачи тепла, с другой стороны, важно предупредить появление «парникового эффекта». Он бывает, когда использован синтетический, «недышащий» утеплитель.
- Отсутствие сырости. Повышенная влажность – это не только причина для появления плесени, но и показатель, из-за которого происходят серьезные потери теплоэнергии.
Как делать теплотехнический расчет стен дома – основные параметры
Перед тем как приступить к непосредственному теплорасчету, нужно собрать подробные сведения о постройке. В отчет будут входить ответы на следующие пункты:
- Назначение здания – жилое это, промышленное или общественное помещение, конкретное предназначение.
- Географическая широта участка, где находится или будет располагаться объект.
- Климатические особенности местности.
- Направление стен по сторонам света.
- Размеры входных конструкций и оконных рам – их высота, ширина, проницаемость, тип окон – деревянные, пластиковые и пр.
- Мощность отопительного оборудования, схема расположения труб, батарей.
- Среднее количество жильцов или посетителей, работников, если это промышленные помещения, которые находятся внутри стен единовременно.
- Стройматериалы, из которых выполнены полы, перекрытия и любые другие элементы.
- Наличие или отсутствие подачи горячей воды, тип системы, которая за это отвечает.
- Особенности вентиляции, как естественной (окна), так и искусственной – вентиляционные шахты, кондиционирование.
- Конфигурация всего строения – количество этажей, общая и отдельная площадь помещений, расположение комнат.
Когда эти данные будут собраны, инженер может приступать к расчету.
Мы предлагаем вам три метода, которыми чаще всего пользуются специалисты. Также можно использовать комбинированный способ, когда факты берутся из всех трех возможностей.
Варианты теплового расчета ограждающих конструкций
Вот три показателя, которые будут приниматься за главный:
- площадь постройки изнутри;
- объем снаружи;
- специализированные коэффициенты теплопроводности материалов.
Теплорасчет по площади помещений
Не самый экономичный, но наиболее частотный, особенно в России, способ. Он предполагает примитивные вычисления исходя из площадного показателя. При этом не учитывается климат, полоса, минимальные и максимальные температурные значения, влажность и пр.
Также в учет не берут основные источники теплопотерь, такие как:
- Вентиляционная система – 30-40%.
- Скаты крыши – 10-25%.
- Окна и двери – 15-25%.
- Стены – 20-30%.
- Пол на грунте – 5-10%.
Эти неточности из-за неучета большинства важных элементов приводят к тому, что сам теплорасчет может иметь сильную погрешность в обе стороны. Обычно инженеры оставляют «запас», поэтому приходится устанавливать такое отопительное оборудование, которое полностью не задействуется или грозит сильному перегреву. Нередки случаи, когда одновременно монтируют отопление и систему кондиционирования, так как не могут правильно рассчитать теплопотери и теплопоступления.
Используют «укрупненные» показатели. Минусы такого подхода:
- дорогостоящее отопительное оборудование и материалы;
- некомфортный микроклимат внутри помещения;
- дополнительная установка автоматизированного контроля за температурным режимом;
- возможные промерзания стен зимой.
Q=S*100 Вт (150 Вт)
- Q – количество тепла, необходимое для комфортного климата во всем здании;
- Вт S – отапливаемая площадь помещения, м.
Значение 100-150 Ватт является удельным показателем количества тепловой энергии, приходящейся для обогрева 1 м.
Если вы выбираете этот метод, то прислушайтесь к следующим советам:
- Если высота стен (до потолка) не более трех метров, а количество окон и дверей на одну поверхность 1 или 2, то умножайте полученный результат на 100 Вт. Обычно все жилые дома, как частные, так и многоквартирные, используют это значение.
- Если в конструкции присутствуют два оконных проема или балкон, лоджия, то показатель возрастает до 120-130 Вт.
- Для промышленных и складских помещений чаще берется коэффициент в 150 Вт.
- При выборе отопительных приборов (радиаторов), если они будут расположены возле окна, стоит прибавить их проектируемую мощность на 20-30%.
Теплорасчет ограждающих конструкций по объему здания
Обычно такой способ используется для тех строений, где высокие потолки – более 3 метров. То есть промышленные объекты. Минусом такого способа является то, что не учитывается конверсия воздуха, то есть то, что вверху всегда теплее, чем внизу.
- V – наружный объем строения в м куб;
- 41 Вт – удельное количество тепла, необходимое для обогрева одного кубометра здания. Если строительство ведется с применением современных строительных материалов, то показатель равен 34 Вт.
Для общей формулы мы советуем дополнительно использовать коэффициенты – это число, на которое нужно умножить результат:
- Стекла в окнах:
- двойной пакет – 1;
- переплет – 1,25.
- Материалы утеплителя:
- новые современные разработки – 0,85;
- стандартная кирпичная кладка в два слоя – 1;
- малая толщина стен – 1,30.
- Температура воздуха зимой:
- -10 – 0,7;
- -15 – 0,9;
- -20 – 1,1;
- -25 – 1,3.
- Процент окон в сравнении с общей поверхностью:
- 10% – 0,8;
- 20% – 0,9;
- 30% – 1;
- 40% – 1,1;
- 50% – 1,2.
Все эти погрешности могут и должны быть учтены, однако, редко используются в реальном строительстве.
Что такое теплотехнический расчет и как его выполнить
В этой статье мы с вами поговорим о теплотехническом расчете наружных стен, а так же разберемся в самом понятии “теплотехнический расчет”, дабы понимать как это происходит. Перед тем, как говорить о теплотехническом расчете наружных стен, следует сначала разобрать само понятие “теплотехнический расчет”.
Что такое теплотехнический расчет?
Теплотехнический расчет ограждающих конструкций — это совокупность мер и действий, предназначенных для определения соответствия ограждающих конструкций современным нормам по тепловой защите здания и сооружения. В современных условиях это означает соответствие стандартам СНиП 23-02-203. Подобными расчетами в частности выясняют теплотехнические характеристики материалов, из которых изготовлена ограждающие конструкции и приведенное сопротивление теплопередачи.
В чем же практический смысл этих трудоемких вычислений, и почему существует необходимость следовать каким-то стандартам, если данные расчеты никак не влияют на прочность ограждающей конструкции? Ответ Вы найдете в следующей главе.
Можно ли пренебречь расчетом?
Рассмотрим ситуацию с точки зрения собственника здания.
У него есть два варианта:
– произвести соответствующие теплотехнические расчеты, закупить и установить необходимые утепляющие материалы;
– учитывать только устойчивость стен.
В первом случае расходы на строительство могут значительно превышать расходы, запланированные во втором случае. Однако дальнейшие затраты на отопление будут минимальны опять же в первом варианте, а во втором они окажутся существенно выше. Казалось бы, здесь и думать нечего. Вряд ли за год набежит такая сумма за отопление, которая перекрыла бы все работы по утеплению и связанными с ними расчетами. А как насчет двух лет? Пяти? Десяти?
Необходимость проведения теплотехнических расчетов аргументируется не только экономической выгодой. Эти расчеты также предусматривают обеспечение соответствующего микроклимата внутри помещения.
Если не провести расчеты, вполне возможно, что в помещении будет сыро, появится грибок, может произойти выступление конденсата — все это также может привести к дополнительным расходам на косметический ремонт.
Если опять-таки говорить об экономической составляющей вопроса, следует помнить, что цены на электроэнергию неуклонно повышаются. Помимо всего вышеупомянутого, эти расчеты нужны для последующего подбора оборудования для отопительных систем и расчета источников отопления. Таким образом, можно снизить затраты на отопление вдвое.
Если же рассматривать экологическую сторону вопроса, то и тут без теплотехнических расчетов никуда. Благодаря снижению потребления электроэнергии, мы придем к рациональному использованию природных ресурсов и уменьшим вредоносное воздействие на экологию.
Методика проведения теплотехнических расчетов
Теперь, обосновав необходимость проведения теплотехнических расчетов ограждающих конструкций, рассмотрим общие принципы выполнения этих расчетов. Во-первых, проведение теплотехнических расчетов производится в строгом соответствии с нормативными документами:
-«Тепловая защита зданий» СНиП 23-02-2003;
-«Проектирование тепловой защиты зданий» СП 23-101-2004;
-«Здания жилые и общественные. Параметры микроклимата в помещениях» ГОСТ 30494-96;
-«Строительная климатология» СНиП 23-01-99;
-Теплотехнический расчет ограждающих конструкций проводится в несколько этапов.
В первую очередь необходимо вычислить трансмиссионные потери через ограждающие конструкции по формуле:
Q t = F/R* (tв — tн)* (1+b)* n
Расшифруем значение каждой переменной:
-Qt — тепловая энергия, передаваемая от внутреннего воздуха в помещении к воздуху наружному,
-Вт; F — площадь наружной стены (ограждающей конструкции), квадратные метры;
-R — сопротивление теплопередаче ограждающей конструкции, м кв. *
-С/Вт; tв — tн — температура внутреннего/наружного воздуха в градусах Цельсия, C;
-b — добавочные потери теплоты (определяются по Приложению 9 СНиП 2 04 05-91);
n — коэффициент положения наружной поверхности по отношению к наружному воздуху (СНиП — II -3-79);
Далее необходимо рассчитать расход теплоты на нагрев поступающего наружного воздуха:
Qв = 0,28G* C * (tв — tн)* k,
-где 0,28 — постоянный коэффициент;
-Qв — столько требуется теплоты на нагрев воздуха наружного, Вт; G — количество неподогретого воздуха, который входит в помещение кг/час;
С — удельная теплоёмкость воздуха, равная 1 КДж/(кг*С);
k — коэффициент влияния встречного теплового потока, равный (является константой и зависит от типа используемых окон);
Cогласно СНиП 2. 04. 05-91 бытовые тепловыделения равняются 10 Вт на метр квадратной площади. Показатель обозначается символом Qб=10 Вт.
Теперь мы можем с легкостью определить тепловую нагрузку помещения, которая равняется сумме трансмиссионных потерь через ограждающие конструкции и расхода теплоты на нагрев поступающего наружного воздуха минус бытовые тепловыделения.
Есть еще один показатель, который используется при проведении теплотехнических расчетов наружных стен — теплопотери через ограждающие конструкции. Это показатель равен одной десятой киловатта, умноженной на площадь ограждающей конструкции: Qп= F*0,1 кВ.
Как можно заметить, очень большую роль играет именно площадь наружной стены. Во всех встречающихся нам формулах, где имеется показатель площади наружных стен, мы видим, что расчетные показатели находятся в прямо пропорциональной зависимости от площади стен, поэтому точное определение площади является одной из первоочередных задач при проведении теплотехнических расчетов.
Следующим по важности параметром является сопротивление теплопередаче. Сопротивление обуславливается материалом, из которого сделано ограждение, и изменениями в зависимости от территориального расположения здания.