7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Содержание

Гидравлический расчет однотрубной системы отопления — Система отопления

Расчет однотрубной системы отопления: что учитывать при расчете + практически пример

Однотрубная система отопления – одно из решений по разводке труб внутри зданий с подключением приборов нагрева. Такая схема видится наиболее простой и эффективной. Сооружение отопительной ветки по варианту «одной трубой» обходится домовладельцам дешевле иных способов.

Чтобы обеспечить работоспособность схемы, необходимо выполнить предварительный расчет однотрубной системы отопления – это позволит поддерживать нужную температуру в доме и предупредить потерю давления в сети. С этой задачей вполне реально справиться самостоятельно. Сомневаетесь в своих силах?

Мы расскажем вам, каковы особенности устройства однотрубной системы, приведем примеры рабочих схем, объясним, какие расчеты обязательно следует выполнить на этапе планирования отопительного контура.

Устройство однотрубной схемы отопления

Гидравлическая устойчивость системы традиционно обеспечивается оптимальным подбором условного прохода трубопроводов (Dусл). Стабильную схему реализовать способом подбора диаметров, без предварительной настройки систем отопления с терморегуляторами, достаточно просто.

Именно к таким отопительным системам прямое отношение имеет однотрубная схема с вертикальным/горизонтальным монтажом радиаторов и при полном отсутствии запорно-регулирующей арматуры на стояках (ответвлениях к приборам).

Методом изменения диаметров труб в однотрубной кольцевой схеме отопления можно достаточно точно сбалансировать имеющие место потери давления. Управление же потоками теплоносителя внутри каждого отдельного нагревательного прибора обеспечивает установка терморегулятора.

Обычно в рамках процесса конструирования отопительной системы по однотрубной схеме на первом этапе выстраиваются узлы обвязки радиаторов. На втором этапе выполняют увязку циркуляционных колец.

Конструирование узла обвязки отдельно взятого прибора предполагает определение потерь давления на узле. Выполняется расчёт с учётом равномерного распределения потока теплоносителя терморегулятором относительно точек подключения на этом схемном участке.

В рамках той же операции выполняется расчёт коэффициента затекания, плюс определение диапазона параметров распределения потоков на замыкающем участке. Уже опираясь на рассчитанный диапазон веток, выстраивают циркуляционное кольцо.

Увязывание циркуляционных колец

Чтобы качественно выполнить увязку циркуляционных колец однотрубной схемы, предварительно выполняется расчёт по возможным потерям давления (∆Ро). При этом не учитывают потери давления на регулировочном вентиле (∆Рк).

Далее по значению расхода теплоносителя на конечном участке циркуляционного кольца и по значению ∆Рк (график в технической документации на прибор), определяется величина настройки регулировочного вентиля.

Этот же показатель можно определить по формуле:

Кв=0,316G / √∆Рк,

  • Кв – величина настройки;
  • G – расход теплоносителя;
  • ∆Рк – потери давления на регулировочном вентиле.

Аналогичные расчёты выполняются для каждого отдельного регулирующего вентиля однотрубной системы.

Правда, диапазон потерь давления на каждом РВ вычисляют по формуле:

∆Рко=∆Ро + ∆Рк – ∆Рn,

  • ∆Ро – возможные потери давления;
  • ∆Рк – потери давления на РВ;
  • ∆Рn – потери давления на участке n-циркуляционного кольца (без учёта потерь в РВ).

Если в результате расчётов необходимые значения для однотрубной системы отопления в целом не были получены, рекомендуется применить вариант однотрубной системы, куда входят автоматические регуляторы расхода.

Такие устройства, как автоматические регуляторы, монтируются на концевых участках схемы (узлы соединений на стояках, отводящие ветки) в точках подключения к возвратной линии.

Если технически изменить конфигурацию автоматического регулятора (поменять местами кран слива и пробку), установка приборов возможна и на линиях подачи теплоносителя.

С помощью автоматических регуляторов расхода осуществляется увязывание циркуляционных колец. При этом определяются потери давления ∆Рс на концевых участках (стояки, приборные ветки).

Остаточные потери давления в границах циркуляционного кольца распределяют между общими участками трубопроводов (∆Рмр) и общим регулятором расхода (∆Рр).

Значение временной настройки общего регулятора выбирается по представленным в технической документации графикам, с учётом ∆Рмр концевых участков.

Рассчитывают потери давления на концевых участках формулой:

∆Рс=∆Рпп – ∆Рмр – ∆Рр,

  • ∆Рр – расчётное значение;
  • ∆Рпп – заданный перепад давлений;
  • ∆Рмр – потери Рраб на участках трубопроводов;
  • ∆Рр – потери Рраб на общем РВ.

Настройку автоматического регулятора основного циркуляционного кольца (при условии изначально не заданного перепада давлений) осуществляют с учётом установки минимально возможного значения из диапазона настройки в технической документации прибора.

Качество управляемости потоков автоматикой общего регулятора контролируют по разности потерь давления на каждом отдельном регуляторе стояка или приборной ветки.

Применение и экономическое обоснование

Отсутствие требований к температуре охлаждённого теплоносителя является отправной точкой для проектирования однотрубных отопительных систем на терморегуляторах с установкой ТР на подводящих линиях радиаторов. При этом обязательным является оснащение теплового пункта автоматической регулировкой.

Схемные решения, где отсутствуют терморегулирующие приборы на подводящих линиях радиаторов, также используются на практике. Но применение подобных схем обусловлено несколько иными приоритетами обеспечения микроклимата.

Обычно однотрубные схемы, где отсутствует автоматическое регулирование, применяют для групп помещений, спроектированных с учётом компенсации тепловых потерь (50% и более) за счёт дополнительных устройств: приточная вентиляция, кондиционирование, электрический подогрев.

Также устройство однотрубных систем встречается в проектах, где нормативами допускается температура теплоносителя, превышающая граничное значение рабочего диапазона терморегулятора.

Проекты многоквартирных домов, где эксплуатация системы отопления завязана с учётом потребляемого тепла посредством счётчиков, обычно выстраивается по периметральной однотрубной схеме.

Экономическому обоснованию для реализации такой схемы подлежит расположение магистральных стояков в разных точках конструкции.

Основными критериями расчёта служит стоимость двух главных материалов: труб отопления и фитингов.

Согласно практическим примерам реализации периметральной однотрубной системы, увеличение Dу проходного сечения трубопроводов в два раза сопровождается увеличением расходов на закупку труб в 2-3 раза. А расходы по фитингам возрастают до 10-ти кратного размера в зависимости от того, из какого материала изготовлены фитинги.

Расчетная база для монтажа

Монтаж однотрубной схемы, с точки зрения расположения рабочих элементов, практически не отличается от устройства тех же двухтрубных систем. Магистральные стояки, как правило, размещаются за пределами жилых помещений.

Правилами СНиП рекомендуется вести прокладку стояков внутри специальных шахт или желобов. Квартирная ветка традиционно выстраивается по периметру.

Прокладка трубопроводов осуществляется на высоте 70-100 мм от верхней границы напольного плинтуса. Или монтаж делают под декоративным плинтусом высотой 100 мм и более, шириной до 40 мм. Современным производством выпускаются такие специализированные накладки под монтаж сантехнических или электрических коммуникаций.

Обвязка радиаторов выполняется схемой «сверху-вниз» с подводом труб на одной стороне или по обеим сторонам. Расположение терморегуляторов «по конкретной стороне» не критичное, но если монтаж прибора отопления выполняется рядом с балконной дверью, установку ТР выполняют обязательно на дальней от двери стороне.

Прокладка труб за плинтусом видится преимущественной с декоративной точки зрения, но заставляет вспомнить о недостатках, когда дело касается прохождения участков, где есть внутрикомнатные дверные проёмы.

Соединение отопительных приборов (радиаторов) с однотрубными стояками выполняется по схемам, допускающим незначительное линейное удлинение труб или по схемам с компенсацией удлинения труб в результате температурных перепадов.

Третий вариант схемных решений, где предполагается использование трёхходового регулятора,не рекомендуется по соображениям экономии.

Если устройство системы предусматривает прокладку стояков, скрытых в штробах стен, рекомендуется использовать в качестве присоединительной арматуры угловые терморегуляторы типа RTD-G и запорные вентили подобные приборам из серии RLV.

Диаметр трубного ответвления к приборам отопления рассчитывается по формуле:

D >= 0.7√V,

  • 0,7 – коэффициент;
  • V – внутренний объём радиатора.

Ответвление выполняется с некоторым уклоном (не менее 5%) в направлении свободного выхода теплоносителя.

Выбор основного циркуляционного кольца

Если проектное решение предполагает устройство системы отопления на основе нескольких циркуляционных колец, необходим выбор основного циркуляционного кольца. Выбор теоретически (и практически) должен выполняться по максимальному значению теплопередачи наиболее удалённого радиатора.

Этот параметр в какой-то степени влияет на оценку гидравлической нагрузки в целом, приходящейся на циркуляционное кольцо.

Рассчитывается теплопередача отдалённого прибора формулой:

Атп = Qв / Qоп + ΣQоп,

  • Атп – расчётная теплопередача удалённого прибора;
  • – необходимая теплопередача удалённого прибора;
  • Qоп – теплопередача от радиаторов в помещение;
  • ΣQоп – сумма необходимой теплопередачи всех приборов системы.

При этом параметр суммы необходимой теплопередачи может состоять из суммы значений приборов, призванных обслуживать здание в целом или только часть здания. Например, при расчёте тепла отдельно для помещений, охватываемых одним отдельным стояком или отдельно взятых площадей, обслуживаемых приборной веткой.

Читать еще:  Гипсокартон или натяжной потолок: какой лучше и дешевле

А вообще расчётная теплопередача любого иного отопительного радиатора, установленного в системе, рассчитывается немного другой формулой:

Атп = Qоп / Qпом,

  • Qоп – необходимая тепловая передача для отдельного радиатора;
  • Qпом – тепловая потребность для конкретного помещения, где используется однотрубная схема.

Проще всего разобраться с расчетами и применение полученных значений можно на конкретном примере.

Практический пример расчёта

Для жилого дома требуется однотрубная система с управлением от терморегулятора.

Значение номинальной пропускной способности прибора на максимальной границе настройки составляет 0,6 м 3 /ч/бар (к1). Максимально возможная характеристика пропускной способности для этого значения настройки – 0,9 м 3 /ч/бар (к2).

Максимально возможный перепад давления ТР (при уровне шума 30дБ) – не более 27 кПа (ΔР1). Напор насоса 25 кПа (ΔР2) Рабочее давление для системы отопления – 20 кПа(ΔР).

Нужно определить диапазон потерь давления для ТР (ΔР1).

Значение внутренней теплопередачи рассчитывают так: Атр = 1 – к1/к2 (1 – 06/09) = 0,56. Отсюда вычисляется требуемый диапазон потерь давления на ТР: ΔР1 = ΔР * Атр (20 * 0,56…1) = 11,2…20 кПа.

Если самостоятельные расчеты приводят к неожиданным результатам, лучше обратиться к специалистам или для проверки воспользоваться компьютерным калькулятором.

Выводы и полезное видео по теме

Подробный разбор расчетов с помощью компьютерной программы с пояснениями по монтажу и улучшению функциональности системы:

Следует отметить, что полномасштабный расчёт даже самых простых решений сопровождается массой вычисляемых параметров. Конечно же, вычислять всё без исключения справедливо при условии организации конструкции отопления, близкой к идеальной структуре. Однако в реальности ничего идеального нет.

Поэтому зачастую полагаются на расчёты как таковые, а также на практические примеры и на результаты работы этих примеров. Особо популярен такой подход для частного домостроения.

Есть, что дополнить, или возникли вопросы по расчету однотрубной системы отопления? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом обустройства отопительного контура. Форма для связи находится в нижнем блоке.

Расчет однотрубной системы отопления с примерами

Наверное, нет смысла подвергать сомнению утверждение, что автономный обогрев собственного жилища имеет ряд преимуществ перед централизованными системами отопления. Единственным недостатком можно считать достаточно большие первоначальные вложения, львиную долю которых составляет проведение гидравлического расчета однотрубной системы отопления. В этой публикации будет рассказано, как самостоятельно рассчитать однотрубную отопительную систему (СО) для небольшого помещения или частного дома.

Сбор данных и подготовительные расчеты

Прежде всего ответим, для чего нужен гидравлический расчет?

  1. Для эффективного обогрева всех помещений независимо от внешней и внутренней температуры воздуха.
  2. Для снижения эксплуатационных затрат, которые возникают в процессе работы отопительного оборудования.
  3. Для снижения затрат, связанных с приобретением оборудования и материалов. Это касается грамотного подбора диаметров трубопровода на каждом участке отопительной системы.
  4. Для снижения уровня шума, связанного с движением теплоносителя по контуру.
  5. Для стабильной работы отопительной системы.

Для того чтобы сделать расчет системы отопления (в этом повествовании будет говориться исключительно об однотрубной схеме с принудительной циркуляцией теплоносителя), необходимо получить следующие данные:

  • Необходимую мощность теплогенератора.
  • Мощность и количество радиаторов для каждого отапливаемого помещения.
  • Диаметр и протяженность отопительного контура.

Имея на руках искомые данные можно переходить к подбору циркуляционного насоса, расчетам количества теплоносителя, емкости расширительного бака и настройки группы безопасности. Теперь обо всем по порядку.

Расчет тепловой производительности котельной установки

Итак, вы решили создавать однотрубную систему отопления частного дома своими руками. Первое, что нужно сделать, чтобы узнать искомую величину мощности теплогенератора – это произвести расчет теплопотерь каждого отапливаемого помещения. Как известно, основные потери тепла исходят от:

  • Наружных стен.
  • Потолка.
  • Пола.
  • Окон.

На примере рассмотрим теплопотери угловой комнаты, с размерами 6 х 3 метра, двумя окнами 1,5 х 1,2 м, и высотой потолков 2,5 м.

  1. Наружные стены (S1) = (6 х 2,5)+(3 х 2,5)-2 (1,5 х 1,2); S1= 15+7,5-3,6=18,9 м 2
  2. Окна (S2) = 2(1,5 х 1,2)= 3,6 м 2
  3. Пол (S3) = 18 м 2
  4. Потолок (S4) =18 м 2

Применяем формулу расчета теплопотерь (Q) = k; для наружных стен k = 62; для окон k = 135; для пола k = 35; для потолка k = 27. Подставляем необходимые значения.

  1. Q1 = 18,9 х 62 = 1171,8 Вт или 1,172 кВт;
  2. Q2 = 3,6 х 135 = 486 Вт или 0,486 кВт;
  3. Q3 = 18 х 35 = 630 Вт или 0,63 кВт
  4. Q4 = 18 х 27 = 486 Вт или 0,486 кВт;

Теперь суммируем все теплопотери для выявления необходимого количества тепла, которого необходимо для конкретного помещения = 2,774 кВт;

Те же действия необходимы для каждого отдельного помещения. Суммируя теплопотери можно сделать вывод о необходимой производительности котельной установки. Есть методика менее точная, но достаточно надежная и быстрая: необходимо использовать удельную мощность котлоагрегата рекомендованную в зависимости от региона.

Тепловую производительность котельной установки можно высчитать, используя Wк = Wуд х S/10; где:

Wк = мощность котлоагрегата;

Wуд = рекомендованная удельная мощность, представленная на рис.;

S/10 = площадь обогреваемого помещения на 10 м 3 .

Теперь, когда, есть данные о мощности котлоагрегата, необходимого для обогрева дома, можно приступать к чертежам контура отопительной системы, прикидывать место размещения радиаторов отопления.

Расчет количества и мощности батарей

Как в однотрубном подключение радиаторов отопления, так и в двухтрубных схемах, эффективность отопления конкретного помещения зависит не только от количества секций радиаторов, их конструкции, материала, из которого они изготовлены, площади поверхности и способа подсоединения к магистральному трубопроводу, но и от материала стен и способа утепления, теплопотерь в окнах и пр.

Воспользуемся рекомендованными данными, которые можно найти в специализированной литературе. 1 м 3 в кирпичном доме требует приблизительно 0.034 кВт тепла для поддержания комфортной температуры; в доме из СИП – панелей – 0,041 кВт; в кирпичном доме с утепленными: перекрытием, чердаком, несущими стенами, фундаментом – 0,02 кВт.

Для примера, рассмотрим подбор батарей для комнаты 18 м 2 с высотой потолков 2,5 м. в кирпичном доме. (0,034 кВт).

  1. Узнаем объем помещения: 18 х 2,5 = 45 м 3 .
  2. Рассчитываем, сколько необходимо тепловой энергии для данной комнаты: 45 х 0,034 = 1,53 кВт

Теперь нужно воспользоваться таблицей, с характеристиками батарей.

На рисунке показаны основные характеристики наиболее распространенных радиаторов. Исходя из представленных данных, лучшее соотношение характеристик и стоимости у алюминиевых батарей. Нам необходимы данные о мощности одной секции, нижняя граница которой равна 0,175 кВт.

  1. Делим полученный результат на мощность секции выбранного типа радиаторов и получаем количество секций: 1,53/ 0,175 = 8,74

Итог: для обогрева помещения 45 м 3 нам необходим алюминиевый радиатор, состоящий из 9 секций. Аналогичные расчеты проведите для каждой комнаты в доме.

Вычисления диаметра трубы для отопительного контура

Данная процедура является обязательной при расчете любой системы отопления. В однотрубных схемах – это еще и достаточно сложно сделать, так как теплоноситель все больше остывает в каждом последующем радиаторе. Для поддержания определенной температуры нужно на каждом последующем участке контура увеличивать скорость движения теплоносителя. Сделать это можно, уменьшая диаметр трубы, согласно необходимой тепловой мощности для каждого радиатора.

Сделать вычисления можно по формуле Rср = β*?рр/∑L; Па/м, Получим среднее значение потери давления вследствие трения на 1 метр расчетного кольца СО. Далее, используя формулу, рассчитываем диаметр трубопровода для конкретного участка контура.

∆t° —разница температур теплоносителя между входом и выходом из котлоагрегата, °С
Q —количество тепла, необходимое на обогрев конкретного помещения
V — скорость теплоносителя, м/с

Несколько слов о скорости движения воды в системе. Чтобы отопление работало эффективно необходимо чтобы скорость движения теплоносителя была как можно выше. Однако, при этом увеличивается давление в системе и возникает шум от трения о поверхность трубопровода. Оптимальная скорость теплоносителя в горизонтальной однотрубной системе отопления должна находиться в пределах 0,3 – 0,7 м/сек. Медленнее – возможно завоздушивание; Быстрее – появляется шум.

Существуют таблицы, в которых можно выбрать необходимый диаметр труб. Для этого диаметра предлагается оптимальная скорость и расход теплоносителя. Рассмотрим пример подбора труб из армированного полипропилена для каждого участка отопительного контура с 6-ю радиаторами разной мощности.

Важно! В таблице указан внутренний диаметр трубы. Оптимальные результаты находятся в колонках, обозначенных синим цветом.

  1. На первом участке СО (от выхода котла до радиатора) мощность системы 15 кВт. Выбираем данные, соответствующие мощности из синих колонок. Подходит труба с внутренним диаметром 20 мм и 25 мм. Выбираем 20 мм (она дешевле). Скорость движения теплоносителя на этом участке будет 0,6 м/с; расход теплоносителя, через трубу такого диаметра при данной скорости – 659 кг/ч.
  2. Первый радиатор имеет мощность 3 кВт поэтому нагрузка на нем уже 15 – 3 = 12 кВт. В оптимальной зоне таблицы данное значение находится в зоне трубы 20 мм.
  3. На участке между первым и вторым радиатором: 12 кВт – 2,5 = 9,5 кВт; диаметр трубы 20 мм.
  4. На третьем радиаторе тепловая нагрузка падает уже до 9,5 – 2 = 7,5 кВт. Исходя из таблицы на этом участке требуется труба с 15 мм внутреннего диаметра.
Читать еще:  Как нанести венецианскую мраморную штукатурку своими руками[Штукатурка

Аналогично делается расчет трубопровода на всех участках СО.

Совет: Следует знать, что армированный полипропилен имеет несколько другие внутренние размеры, чем указано в таблице. Показанный нами пример внутреннего диаметра 20 мм реально имеет 21,2 мм. и маркировку ПП32, и соответственно внешний диаметр 32 мм.

Расчет объема расширительного бака

Для того чтобы рассчитать объем расширительного бачка мембранного типа следует знать количество теплоносителя, который находится в отопительном контуре. Зависимость такая: расширительный бак должен быть объемом в 10 % от количества теплоносителя.

Количество воды в СО рассчитывается по формуле: W = π (D 2 /4) L где:

  • π – 3,14;
  • D – внутренний диаметр участка трубопровода;
  • L – длина участка трубопровода (если весь контур выполнен из трубы одного диаметра, то считаем длину контура).

Например, внутренний диаметр трубопровода из армированного полипропилена – 21,2 мм = 0,021м; длина контура – 100 м. 3,14 х (0,021 2 /4) х 100 = 0.0345м 3 или 34,5 литра. От сюда вывод: при объеме теплоносителя в системе 34,5 л, в температурных пределах СО от 0 до 80°С и давлении в системе от 0,3 до 1 Бар, необходим расширительный бак, емкостью 3,5 л.

Чтобы рассчитать параметры циркуляционного насоса нужны данные о мощности котла, разница температур на входе и выходе котельной установки. Далее можно воспользоваться формулой Q = N /(t 2- t 1), где N – мощность котлоагрегата; T1 – температура теплоносителя на подающем патрубке, T2 – температура охлажденного теплоносителя на обратной ветке контура.

Совет: следует знать, что для построения грамотной однотрубной системы отопления, кроме полученных данных необходимо сделать расчет гидравлических сопротивлений, которые возникают на равнопроходных отводах, учесть гидравлические потери на точках сужения трубопровода, грязевике и обратном клапане (если предполагается). Данный расчет сделать самостоятельно достаточно просто, используя программы: «Гидравлические и тепловые расчеты» и HERZ. C. O. С.

Гидравлический расчет однотрубной системы отопления — Система отопления

Узнай стоимость ремонта

Ремонтные работы?

Почему клиенты выбирают нас?

Отопление и Ремонт

У нас самые выгодные цены!

Затруднительно помыслить существование человека в России без отопления коттеджа. Всем россиянам известно, что топливо для отопления постоянно увеличивается в цене. Любой человек может разобраться: как улучшить систему дачи. В любом регионе России необходимо зимой отапливать дом. На данном веб сайте собрано большое количество обогревательных систем квартиры, использующих абсолютно уникальные способы извлечения тепловой энергии. Указанные системы обогрева можно монтировать комбинационно или самостоятельно.

Экономичность теплового комфорта в доме обеспечивают расчет гидравлики, её качественный монтаж и правильная эксплуатация. Главные компоненты отопительной системы — источник тепла (котёл), тепловая магистраль (трубы) и приборы теплоотдачи (радиаторы). Для эффективного теплоснабжения необходимо сохранить первоначальные параметры системы при любых нагрузках независимо от времени года.

Перед началом гидравлических расчётов выполняют:

Расчёты проводились в программе Excel. Готовый результат можно посмотреть в конце инструкции.

Что такое гидравлический расчёт

Это третий этап в процессе создания тепловой сети. Он представляет собой систему вычислений, позволяющих определить:

  • диаметр и пропускную способность труб;
  • местные потери давления на участках;
  • требования гидравлической увязки;
  • общесистемные потери давления;
  • оптимальный расход воды.

Согласно полученным данным осуществляют подбор насосов .

Для сезонного жилья, при отсутствии в нём электричества, подойдёт система отопления с естественной циркуляцией теплоносителя (ссылка на обзор ).

Основная цель гидравлического расчёта — обеспечить совпадение расчётных расходов по элементам цепи с фактическими (эксплуатационными) расходами. Количество теплоносителя, поступающего в радиаторы, должно создать тепловой баланс внутри дома с учётом наружных температур и тех, что заданы пользователем для каждого помещения согласно его функциональному назначению (подвал +5, спальня +18 и т.д.).

Комплексные задачи — минимизация расходов :

  1. капитальных – монтаж труб оптимального диаметра и качества;
  2. эксплуатационных:
    • зависимость энергозатрат от гидравлического сопротивления системы;
    • стабильность и надёжность;
    • бесшумность.

Замена централизованного режима теплоснабжения индивидуальным упрощает методику вычислений

Для автономного режима применимы 4 метода гидравлического расчёта системы отопления:

  1. по удельным потерям (стандартный расчёт диаметра труб);
  2. по длинам, приведённым к одному эквиваленту;
  3. по характеристикам проводимости и сопротивления;
  4. сопоставление динамических давлений.

Два первых метода используются при неизменном перепаде температуры в сети.

Два последних помогут распределить горячую воду по кольцам системы, если перепад температуры в сети перестанет соответствовать перепаду в стояках/ответвлениях.

Расчет гидравлики системы отопления

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже.

Подобные документы

Гидравлический расчет отопительной системы здания. Устройство двухтрубной гравитационной системы водяного отопления с верхней разводкой, ее схема с указанием длин участков трубопроводов и размещения отопительных приборов. Расчет основных параметров.

контрольная работа [93,8 K], добавлен 20.06.2012

Монтаж стационарной отопительной установки. Гидравлический расчет системы водяного отопления. Тепловой расчет отопительных приборов системы водяного отопления. Подбор нерегулируемого водоструйного элеватора типа ВТИ. Расчет естественной вентиляции.

курсовая работа [169,7 K], добавлен 19.12.2010

Гидравлический расчет и конструирование системы отопления жилого здания. Характеристика отопительных приборов. Определение количества типоразмеров конвекторов. Прокладка магистральных труб. Установка отопительных стояков. Расчет отопительных приборов.

Определение тепловых нагрузок помещений на систему отопления. Подбор приборов к системе отопления основной части здания и для четвертой секции, балансировка системы отопления. Гидравлический расчет системы отопления двухтрубной поквартирной системы.

курсовая работа [101,6 K], добавлен 23.07.2011

Проектирование насосной системы водяного отопления индивидуального жилого дома. Характеристика наружных ограждений. Составление тепловых балансов помещений. Гидравлический расчет главного циркуляционного кольца. Тепловой расчет отопительных приборов.

курсовая работа [210,5 K], добавлен 22.03.2015

Теплотехнический расчет системы. Определение теплопотерь через ограждающие конструкции, на инфильтрацию наружного воздуха. Расчет параметров системы отопления здания, основного циркуляционного кольца системы водяного отопления и системы вентиляции.

курсовая работа [151,7 K], добавлен 11.03.2013

Обоснование схем и компоновка систем отопления, гидравлический расчет. Определение основных параметров основного циркуляционного кольца. Тепловой расчет поверхности отопительных приборов. Число элементов в секционном приборе, поправочные коэффициенты.

контрольная работа [134,1 K], добавлен 01.07.2014

Теплотехнический расчет ограждающих конструкций здания. Учет влажности материалов при расчете теплопередачи. Определение площади поверхности и числа элементов отопительных приборов. Гидравлический расчет теплопроводов. Методика расчета вентиляции.

курсовая работа [288,6 K], добавлен 22.11.2014

Классификация видов отопления помещений в зависимости от преобладающего способа теплопередачи. Особенности конвективной и лучистой систем отопления. Характеристика огневоздушного, водяного, парового, инфракрасного и динамического вида отопления.

курсовая работа [1,2 M], добавлен 02.04.2015

Определение толщины и состава слоев стен. Определение массивности здания и расчетной температуры. Проверка на отсутствие конденсации. Выбор конструкции заполнения световых проемов. Гидравлический расчет системы отопления. Расчет системы вентиляции.

курсовая работа [921,0 K], добавлен 08.03.2015

На тему: «Гидравлический расчет однотрубной системы отопления»

Проверила: Попова М.В.

Введение

  • 1.Устройство систем отопления
  • Инерционность систем отопления
  • Способы подключения отопительных приборов
  • Принципы проектирования системы отопления
  • Однотрубная система водяного отопления
  • Заключение
  • Задачей гидравлического расчета является определение диаметров подающих трубопроводов и потерь напора.

    При гидравлическом расчете однотрубных систем отопления необходимо учитывать следующие рекомендации:

    — потери давления в стояках должны составлять не менее 70% общих потерь давления в циркуляционном кольце за вычетом потерь давления оборудования теплового узла;

    — рекомендуется применять верхнюю разводку магистральных теплопроводов, при которой обеспечивается движение воды к отопительному прибору «сверху-вниз»;

    — для устойчивой работы П-образных стояков в опускной его части (при движении воды «снизу-вверх») расход воды в нем должен быть более минимально допустимого значения, определяемого по [5, табл. 10.10];

    — для многоэтажных зданий при нижней разводке магистральных теплопроводов рекомендуется применять П-образные стояки с транзитным подъемным участком и отопительным опускным, а также Т-образные стояки с транзитным подъемным участком и двумя отопительными опускными;

    — стояк проектируется неизменного диаметра с использованием последовательно соединенных унифицированных узлов, при расчете стояк рассматривают как один участок;

    — расчет рекомендуется проводить при одинаковых (постоянных) или различных (переменных) перепадах температуры воды в стояках методом характеристик сопротивления.

    Рассмотрим на примере порядок и последовательность расчета. Для расчета приняты исходные данные предыдущих примеров 1.1. 1.3.

    ПРИМЕР 1.4. В качестве примера выполним гидравлический расчет однотрубной вертикальной тупиковой системы водяного отопления с централизованным теплоснабжением от тепловых сетей при независимой схеме присоединения системы отопления к ним. Заданы следующие расчетные параметры тепловых сетей и системы отопления; Тг = 120°С, Та = 70°С, k = 85°C, f0 = 65°C. Тепловые нагрузки помещений QA и здания Q3d = = 53540 Вт принимаем из табл. 1.3. Следует помнить исходное, заданное в примере 1.2 условие индивидуального регулирования в системе отопления (Hi =0,8), что соответствующим образом отразилось на величине расчетных тепловых нагрузок помещений и здания.

    По выражению (1.18) определяем расчетную мощность системы отопления:

    Затем на планах и разрезах этажей, подвала и чердака (рис. 1.11. 1.13) указываем в условных обозначениях отопительные приборы, стояки, магистральные теплопроводы, трубопроводы ввода тепловых сетей в тепловой пункт и трубопроводы ввода системы отопления в тепловой пункт. На планах и разрезах теплового пункта (в примере не показаны) указываем местоположение основного оборудования с привязкой его размерными линиями к осям или стенам теплового пункта.

    Читать еще:  Какие трубы лучше для скважины?

    На основании указанных выше чертежей выполняем аксонометрические (в данном случае в косоугольной диметрии) схемы системы отопления (рис. 1.14, 1.15). На схеме системы отопления распределяем тепловые нагрузки помещений Q4 по отопительным приборам в виде нагрузки отопительного прибора, суммируем по стоякам и указываем на схеме.

    Определяем основное расчетное циркуляционное кольцо — через наиболее нагруженный из удаленных стояков наиболее нагруженной ветки системы, т.е. через стояк №24 ветки Б. Разбиваем основное циркуляционное кольцо на расчетные последовательные участки, нумеруем их и указываем на схеме. Определяем их длины ?уч и тепловые нагрузки Qt. Расчет тепловых нагрузок участков выполняем по выражению (1.17), начиная от Ст.24 и суммируя с нарастающим итогом в сторону теплового пункта. Например, для участков №13 и №13- Qt = 1,05 3030 = 3180 Вт.

    Исходные данные и результаты гидравлического расчета рекомендуется вносить в ведомость гидравлического расчета, например в виде табл. 1.6. Расход воды определяем по выражению (1.19): G = 0,86Qf/(85 — 65) = 0,043 Q, и заносим в графу 3. Диаметры участков подбираем, задаваясь оптимальной скоростью движения теплоносителя не более 0,4. 0,5 м/с, с помощью таблиц гидравлического расчета [5, Приложение II]. Учитывая вероятность образования отложений в магистралях, принимаем диаметры некоторых участков, например №11. 13, на типоразмер выше. На основании принятых диаметров заполняем графы 7 и 10 из табл. 10.7 [5].

    Значения Syd (графа 5), необходимые при выполнении расчета по задаваемому циркуляционному давлению, в данном случае не вычисляется, т.к. расчет ведем по задаваемой скорости воды на участке. Расчет проводится по выражению (1.31), т.е. значение графы 8 получаем перемножением величин в графах 4 и 7, значение графы 10 — сложением величин в графах 8 и 9, значение графы 12 — перемножением величин в графах 10 и 11. И окончательно, потерю давления на участке — по выражению (1.30).

    Характеристика сопротивления стояка определяется суммой характеристик сопротивления трубных узлов и других стояков диаметром dv = 15 мм

    Требуемое значение пропускной способности kv балансового клапана определяем по формуле (1 28), а также с помощью номограммы, аналогичная схема которой показана на рис 1 106, для определения значения и гидравлической настройки клапана

    В настоящем примере использованы номограммы фирмы Herz для балансовых клапанов Расчет гидравлических параметров и его результаты выполняем в ведомости в виде табл 1.7

    Teplius

    Экономичность теплового комфорта в доме обеспечивают расчет гидравлики, её качественный монтаж и правильная эксплуатация. Главные компоненты отопительной системы — источник тепла (котёл), тепловая магистраль (трубы) и приборы теплоотдачи (радиаторы). Для эффективного теплоснабжения необходимо сохранить первоначальные параметры системы при любых нагрузках независимо от времени года.

    Перед началом гидравлических расчётов выполняют:

    • Сбор и обработку информации по объекту с целью:
      • определения количества требуемого тепла;
      • выбора схемы отопления.
    • Тепловой расчёт системы отопления с обоснованием:
      • объёмов тепловой энергии;
      • нагрузок;
      • теплопотерь.

    Если водяное отопление признаётся оптимальным вариантом, выполняется гидравлический расчёт.

    Расчёты проводились в программе Excel. Готовый результат можно посмотреть в конце инструкции.

    Что такое гидравлический расчёт

    Это третий этап в процессе создания тепловой сети. Он представляет собой систему вычислений, позволяющих определить:

    • диаметр и пропускную способность труб;
    • местные потери давления на участках;
    • требования гидравлической увязки;
    • общесистемные потери давления;
    • оптимальный расход воды.

    Согласно полученным данным осуществляют подбор насосов.

    Для сезонного жилья, при отсутствии в нём электричества, подойдёт система отопления с естественной циркуляцией теплоносителя (ссылка на обзор).

    Комплексные задачи — минимизация расходов:

    1. капитальных – монтаж труб оптимального диаметра и качества;
    2. эксплуатационных:
      • зависимость энергозатрат от гидравлического сопротивления системы;
      • стабильность и надёжность;
      • бесшумность.

    Замена централизованного режима теплоснабжения индивидуальным упрощает методику вычислений

    Для автономного режима применимы 4 метода гидравлического расчёта системы отопления:

    1. по удельным потерям (стандартный расчёт диаметра труб);
    2. по длинам, приведённым к одному эквиваленту;
    3. по характеристикам проводимости и сопротивления;
    4. сопоставление динамических давлений.

    Два первых метода используются при неизменном перепаде температуры в сети.

    Два последних помогут распределить горячую воду по кольцам системы, если перепад температуры в сети перестанет соответствовать перепаду в стояках/ответвлениях.

    Расчет гидравлики системы отопления

    Нам потребуются данные теплового расчёта помещений и аксонометрической схемы.

    Вынесите данные в эту таблицу:

    Шаг 1: считаем диаметр труб

    В качестве исходных данных используются экономически обоснованные результаты теплового расчёта:

    1а. Оптимальная разница между горячим (tг) и охлаждённым( tо) теплоносителем для двухтрубной системы – 20º

    • Δtco=tг- tо=90º-70º=20ºС

    1б. Расход теплоносителя G, кг/час — для однотрубной системы.

    2. Оптимальная скорость движения теплоносителя – ν 0,3-0,7 м/с.

    Чем меньше внутренний диаметр труб — тем выше скорость. Достигая отметки 0,6 м/с, движение воды начинает сопровождаться шумом в системе.

    3. Расчётная скорость теплопотока – Q, Вт.

    Выражает количество тепла (W, Дж), переданного в секунду (единицу времени τ):

    Формула для расчёта скорости теплопотока

    4. Расчетная плотность воды: ρ = 971,8 кг/м3 при tср = 80 °С

    5. Параметры участков:

    • зависимость скорости движения воды — ν, с
    • теплового потока — Q, Вт
    • расхода воды G, кг/час от внутреннего диаметра труб

    Пример

    Задача: подобрать диаметр трубы для отопления гостиной площадью 18 м², высота потолка 2,7 м.

    • расход мощности – 1 кВт на 30 м³
    • запас тепловой мощности – 20%

    Расчёт:

    • объём помещения: 18 * 2,7 = 48,6 м³
    • расход мощности: 48,6 / 30 = 1,62 кВт
    • запас на случай морозов: 1,62 * 20% = 0,324 кВт
    • итоговая мощность: 1,62 + 0,324 = 1,944 кВт

    Находим в таблице наиболее близкое значения Q:

    Получаем интервал внутреннего диаметра: 8-10 мм.
    Участок: 3-4.
    Длина участка: 2.8 метров.

    Шаг 2: вычисление местных сопротивлений

    Чтобы определиться с материалом труб, необходимо сравнить показатели их гидравлического сопротивления на всех участках отопительной системы.

    Факторы возникновения сопротивления:

    Трубы для отопления

    • в самой трубе:
      • шероховатость;
      • место сужения/расширения диаметра;
      • поворот;
      • протяжённость.
    • в соединениях:
      • тройник;
      • шаровой кран;
      • приборы балансировки.

    Расчетным участком является труба постоянного диаметра с неизменным расходом воды, соответствующим проектному тепловому балансу помещения.

    Для определения потерь берутся данные с учётом сопротивления в регулирующей арматуре:

    1. длина трубы на расчётном участке/l,м;
    2. диаметр трубы расчётного участка/d,мм;
    3. принятая скорость теплоносителя/u, м/с;
    4. данные регулирующей арматуры от производителя;
    5. справочные данные:
      • коэффициент трения/λ;
      • потери на трение/∆Рl, Па;
      • расчетная плотность жидкости/ρ = 971,8 кг/м3;
    6. технические характеристики изделия:
      • эквивалентная шероховатость трубы/kэ мм;
      • толщина стенки трубы/dн×δ, мм.

    Для материалов со сходными значениями kэ производители предоставляют значение удельных потерь давления R, Па/м по всему сортаменту труб.

    Для поиска гидросопротивления/ΔP в одном участке сети подставляем данные в формулу Дарси-Вейсбаха:

    Для стальных и полимерных труб (из полипропилена, полиэтилена, стекловолокна и т.д.) коэффициент трения/ λ наиболее точно вычисляется по формуле Альтшуля:

    Re — число Рейнольдса, находится по упрощённой формуле (Re=v*d/ν) или с помощью онлайн-калькулятора:

    Шаг 3: гидравлическая увязка

    Для балансировки перепадов давления понадобится запорная и регулирующая арматура.

    • проектная нагрузка (массовый расход теплоносителя — воды или низкозамерзающей жидкости для систем отопления);
    • данные производителей труб по удельному динамическому сопротивлению/А, Па/(кг/ч)²;
    • технические характеристики арматуры.
    • количество местных сопротивлений на участке.

    Задача: выровнять гидравлические потери в сети.

    В гидравлическом расчёте для каждого клапана задаются установочные характеристики (крепление, перепад давления, пропускная способность). По характеристикам сопротивления определяют коэффициенты затекания в каждый стояк и далее — в каждый прибор.

    Фрагмент заводских характеристик поворотного затвора

    Выберем для вычислений метод характеристик сопротивления S,Па/(кг/ч)².

    Потери давления/∆P, Па прямо пропорциональны квадрату расхода воды по участку/G, кг/ч:

    В физическом смысле S — это потери давления на 1 кг/ч теплоносителя:

    где:

    • ξпр — приведенный коэффициент для местных сопротивлений участка;
    • А — динамическое удельное давление, Па/(кг/ч)².

    Удельным считается динамическое давление, возникающее при массовом расходе 1 кг/ч теплоносителя в трубе заданного диаметра (информация предоставляется производителем).

    Σξ — слагаемое коэффициентов по местным сопротивлениям в участке.

    Приведенный коэффициент:

    Он суммирует все местные сопротивления:

    С величиной:

    которая соответствует коэффициенту местного сопротивления с учётом потерь от гидравлического трения.

    Шаг 4: определение потерь

    Гидравлическое сопротивление в главном циркуляционном кольце представлено суммой потерь его элементов:

    • первичного контура/ΔPIк ;
    • местных систем/ΔPм;
    • теплогенератора/ΔPтг;
    • теплообменника/ΔPто.

    Сумма величин даёт нам гидравлическое сопротивление системы/ΔPсо:

    Обзор программ

    Для удобства расчётов применяются любительские и профессиональные программы вычисления гидравлики.

    Самой популярной является Excel.

    Можно воспользоваться онлайн-расчётом в Excel Online, CombiMix 1.0, или онлайн-калькулятором гидравлического расчёта. Стационарную программу подбирают с учётом требований проекта.

    • HERZ C.O. 3.5 – производит расчёт по методу удельных линейных потерь давления.
    • DanfossCO и OvertopCO – умеют считать системы с естественной циркуляцией.
    • «Поток» (Potok) — позволяет применять метод расчёта с переменным (скользящим) перепадом температур по стоякам.

    Следует уточнять параметры ввода данных по температуре — по Кельвину/по Цельсию.

    Как работать в EXCEL

    Использование таблиц Excel очень удобно, поскольку результаты гидравлического расчёта всегда сводятся к табличной форме. Достаточно определить последовательность действий и подготовить точные формулы.

    Ввод исходных данных

    Выбирается ячейка и вводится величина. Вся остальная информация просто принимается к сведению.

    Ссылка на основную публикацию
    Статьи c упоминанием слов:

    Adblock
    detector