17 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Содержание

Ветрогенераторы: принцип действия, типы, применение, эффективность работы — Альтер Эйр

Ветрогенераторы: принцип действия, типы, применение, эффективность работы

Обладаем бесценным опытом. Знаем, что к чему.

Вся продукция сертифицирована. Гарантия от производителя

Реализация проектов по вентиляции, кондиционированию и отоплению

Собственные установщики осуществят монтаж любой сложности с гарантией

Курьером и службами почтовой перевозки. Заказ свыше 4000 грн — доставка бесплатно.

Подбор и проектирование любой сложности. Разработка концепций по всей Украине

Оплата при доставке, в офисе или через кассу банка. Плательщик НДС.

Обслуживание после окончания срока гарантии или не гарантийного случая

Похожие материалы

Альтернативная энергия для дома: солнечные и ветряные электростанции

Альтернативная энергетика для дома: источники, предназначение, эксплуатация

Солнечные батареи для энергоснабжения дома площадью 60 м²

Солнечные батареи для дома: расчет стоимости комплекта

Солнечные батареи для квартиры в многоэтажном доме

Сервис систем с ветрогенераторами

Проектирование систем альтернативной энергетики

Консалтинг систем альтернативной энергетики

Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) – это прибор для превращения энергии ветра в электрическую.

Сначала он превращает кинетическую энергию ветра в механическую энергию ротора, а затем в электрическую энергию. Мощность ветрогенератора может быть от 5 КВт до 4500 КВт. Современные устройства генерируют энергию даже очень слабого ветра – от 4 м/с. Ветроэлектрические установки могут входить в состав частной независимой электростанции и позволяют продавать излишнюю энергию государству по условиям «зеленого тарифа». Такие сооружения могут быть источником энергии для локальных и островных объектов, так как решают проблемы энергоснабжения автономно.

Как работает ветрогенератор: принцип преобразования энергии ветра

Потоки ветра вращают лопасти ветрогенератора: проходят через турбину, приводит её в действие и она начинает вращаться. На валу турбины возникает энергия, которая будет пропорциональна ветровому потоку. Чем сильне ветер, тем большее количество энергии возникает. Далее энергия передается по валу ротору на мультипликатор (если он есть), который её генерирует. Учтите, что более продуктивными являются устройства без мультипликатора, который ускоряет вращение оси, потому что не создается, а, естественно, и не растрачивается лишняя энергия, а скорости ветра вполне достаточно для оптимальной работы ветрогенератора.

Генератор превращает механическую энергию в электрическую.

Мощность ветряка измеряется «ометаемой» площадью турбины.
Чем больший размер лопастей, тем большую мощность он создает.

Мощность ветрогенератора рассчитывается исходя из кубической зависимости скорости ветра.

Пример:

Если ветровой поток со скоростью n создает мощность 100 Вт, то поток со значеним n+1 будет создавать мощность 300 Вт, а вот n+2 – уже 900 Вт.

Поэтому, если размер турбины не большой, то нужен очень сильный поток ветра, чтобы мощность была высокой, и наоборот – большая турбина может выдавать ту же мощность при более слабом ветре.

Но для того, чтобы работа ветрогенератора была сбалансированной и выдавала нужное количество энергии нужно на этапе проектирования правильно рассчитать все необходимые параметры ветряной электростанции.

Конструкция ветряной электростанции

Система состоит из:

Конструкция ветряка:

  • Мачта (может быть трубчатого типа или «ферма»):
  • Турбина – это ротор, предназначенный для того, чтобы превратить энергию прямолинейного движения воздушного потока;
  • Система управления турбиной;
  • Генератор преобразовывает энергию ветра в электрическую;
  • Ланка передачи энергии (мультипликатор или сам вал);
  • Выпрямитель (поскольку зачастую в ветряках используются генераторы переменного тока для того, чтобы правильно зарядить аккумулятор или отправить энергию в сеть (бытовой сегмент));
  • Система азимутального привода или хвост (иногда устанавливаются машины, у которых к ветряку прикрепляется «хвост», он ориентируется по ветру самостоятельно).

Типы ветрогенераторов

По мощности и области применения ветрогенераторы бывают:

  • промышленные (мощность от 500 КВт);
  • бытовые (мощность 0-10 КВт).

Устройства с мощностью от 10 до 500 КВт используются крайне редко.

По конструкции бытовые типы ветряков отличаются конструкцией ротора (турбины):

  1. С горизонтальной осью. Отличаются системой управления турбины (ротора), она может быть:
  • аэромеханической (на лопастях установлены специальный «закрилышки», которые меняю угол направления ветра: чем больше скорость ветра, тем больше угол атаки лопастей и наоборот). Меняя угол атаки, мы можем управлять турбиной как на малых, так и на больших скоростях для эффективной и правильной работы устройства.
  • с азимутальным приводом (электроника фиксирует скорость и направление ветра, поворачивает или отворачивает турбину от ветра, если скорость ветра превышает номинальную).

  1. С вертикальной осью – это малоэффективные устройства, которые не рекомендовано использовать из-за ряда недостатков.
    Они отличаются типом турбин:
  • ротор Савониуса (Savonius). Их недостатком является коэффициент опережения. Если скорость ветра 10 м/с, то законцовка турбины будет вращаться со скоростью 100 м/с, соответственно, коэффициент опережения – 10. Фактически ветряк не может самостоятельно стартовать, его нужно раскручивать и только после этого он начинает работать. Если этого не делать, то он начет вырабатывать энергию только при скорости ветра 10 м/с и больше.
  • ротор Дарье (Darrieus). Применяются разве что как анемоскопы, так как малоэффективные.

Сейчас широкое применение получили ветрогенераторы с горизонтальной осью вращения (крыльчатые), благодаря тому, что у них коэффициент использования энергии ветрового потока (КИЭВ) легко достигает 30% и больше, а у ветрогенераторов с вертикальной осью вращения КИЭВ составляет около 20%.

Система бытового энергоснабжения с использованием ветрогенератора похожа на систему с солнечными модулями, в одной системе могут использоваться как ветрогенераторы, так и солнечные модули.

От высоты мачты и диаметра ротора зависит количество выработанной энергии следующим образом: на каждые 10 метров подъёма ветряка добавляется 1 м/с скорости ветра. Чем выше мачта, тем больше вероятность того, что он будет работать максимально эффективно. И та же ситуация с ротором: чем больше диаметр, тем больше выработка энергии.

Читать еще:  Наливные полы 3д своими руками видео

Значения силы ветрового потока для работы ветряка:

  1. Скорость ветра для начала вращения лопастей, при котором мощности нет вообще – от 1,5 м/с.
  2. Минимальная скорость ветра при которой уже начинается генерация мощности – 3 м/с.
  3. Номинальная скорость ветра (для ветрогенераторов украинского производства) – 7-9 м/с.
  4. Максимальная скорость ветра, при которой ветрогенератор украинского производства сохраняет свою работоспособность– 52 м/с (200 км/час), что свидетельствует о высоком качестве сборки установки и прочности материалов изготовления.

Применение и рекомендации по месту установки ветрогенератора

Ветрогенераторы характеризуются широким применением на объектах различного назначения: частные дома и домохозяйства, предприятия, отдельные сооружения, которые требуют автономного энергоснабжения.

Их устанавливают на открытых, желательно возвышенных территориях, где есть хороший ветровой потенциал: поле, горы (холмы), остров и даже мелководье.

Ветрогенераторы могут устанавливаться как по одиночке так и группами, объединяясь в ветропарк для энергоснабжения масштабных предприятий.

Чаще всего ветряные электростанции применяются для энергоснабжения автономных зданий, где отсутствует подключение к городской электросети.

Маломощные ветряки используются на охотничьих угодьях, рыбацких станах, на дачных участках для пчеловодов, на автономных светильниках для освещения дорог.

В настоящее время применение ветрогенераторов как альтернативы центральному энергоснабжению нерентабельно из-за большой стоимости оборудования, но, в то же время, возможно использование ветрогенераторов в местах, где отсутствует централизованное энергоснабжение или присутствуют частые перебои. Период окупаемости – 25 лет.

Также существует техническая возможность исполнения генератора выдающего переменный ток, который можно использовать для прямого питания потребителей, которые не требуют бесперебойного питания, к примеру, насос для осушения какой-нибудь территории.

В Украине на всей территории возможно использование ветрогенераторов с той или иной степенью эффективности. Наиболее выгодно, с точки зрения ветрового потенциала, размещать ветрогенераторы в Крыму и Закарпатье.

Эффективность КПД ветрогенератора: способы увеличения, конструкция и рабочие характеристики ветряка

Обновлено: 4 мая 2019

Существующие конструкции ветрогенераторов пока не могут составить полноценную конкуренцию наиболее эффективным методам производства электроэнергии. Причина этого заключается в невысокой производительности, которая, в конечном счете, является следствием низкого КПД ветрогенератора.

Здесь насчитывается масса причин, сочетание которых уменьшает эффективность устройства, многие из них относятся к конструктивной области, другие являются тонкими эффектами, но все вместе они образуют чрезвычайно устойчивую преграду на пути к повышению основных рабочих параметров. Вопрос довольно непростой и заслуживает более подробного рассмотрения.

Рабочие характеристики ветряка

КПД не является единственным качественным показателем работоспособности ветрогенератора. Примечателен факт, что для конечного пользователя сам по себе КПД не представляет практического интереса, поскольку он является слишком обобщенным понятием. Для владельца устройства гораздо интереснее более конкретные и адресные параметры:

  • мощность
  • производительность
  • минимальная и максимальная скорость ветра
  • тип ротора
  • ремонтопригодность
  • высота мачты

На практике может возникнуть интерес и к другим характеристикам установки, в зависимости от степени их влияния на состояние и результаты работы устройства. Для промышленных образцов, изготовленных на заводе, ознакомление с подробными техническими характеристиками не составляет труда — они все указаны в паспорте устройства.

Другое дело, если ветряк создан самостоятельно. Тогда опираться даже на расчетные данные нет смысла, поскольку на практике они могут не подтверждаться и значительным образом отличаться от проектных. Поэтому необходимо всячески тестировать вновь созданный ветрогенератор, испытывая и снимая показания на разных скоростях ветра, режимах работы и прочих условиях функционирования.

От чего зависит КПД ветрогенератора?

Как уже говорилось, КПД ветрогенератора является производным от его технического состояния, вида турбины, конструктивных особенностей данной модели. Из школьного курса физики известно, что КПД — это отношение полезной работы к общей работе. Или отношение энергии, затраченной на выполнение работы, к энергии, полученной в результате.

В этом отношении возникает интересный момент — используемая энергия ветра получена совершенно бесплатно, никаких усилий со стороны пользователя приложено не было. Это делает КПД чисто теоретическим показателем, определяющим чисто конструктивные качества устройства, тогда как для владельцев в большей степени важны эксплуатационные характеристики. То есть, возникает ситуация, в которой КПД не столь важен, все внимание отводится чисто практическим задачам.

Тем не менее, при изменениях рабочих параметров в ту или иную сторону, автоматически меняется и КПД, что свидетельствует о его взаимосвязанности с общим состоянием устройства.

Коэффициент использования энергии ветра

Следует отметить, что для ветрогенераторов существует свой, специфический показатель эффективности — КИЭВ (Коэффициент Использования Энергии Ветра). Он обозначает, какой процент воздушного потока, проходящего в рабочем сечении, непосредственно воздействует на лопасти ветряка. Или, если говорить более наукообразно, он демонстрирует отношение мощности, полученной на валу устройства, к мощности потока, воздействующего на ветровую поверхность рабочего колеса. Таким образом, КИЭВ является специфическим, применительным только для ветрогенераторов, аналогом КПД.

Некоторые специалисты утверждают, что в теоретических исследованиях термин КПД для ветряков вообще неприменим, вместо него следует использовать именно КИЭВ.

На сегодняшний день значения КИЭВ от изначального 10-15 % (показатели старинных ветряных мельниц) возросли до 356-40 %. Это связано с усовершенствованием конструкции ветряков и появлением новых, более эффективных материалов и технических деталей, узлов, способствующих уменьшению потерь на трение или прочие тонкие эффекты.

Теоретические исследования определили максимальный коэффициент использования энергии ветра равным 0,593.

Какие конструкции имеют наивысший КПД?

На сегодня наивысший КПД горизонтальных ветровых установок, обладающих большей эффективностью, чем вертикальные ветряки, равен 0,4. Для вертикальных устройств среднее значение считается равным 0,38, т.е. показатели близки и не находятся на большом удалении друг от друга. Периодически появляются сообщения о разработках устройств, КПД которых превышает существующие показатели в 2 или более раз, что весьма сомнительно и не подтверждается более ничем, кроме голословных утверждений журналистов, плохо представляющих себе предмет.

Тем не менее, устройства с заметно возросшей эффективностью существуют. Они созданы в разных конструкционных вариантах, есть горизонтальные или вертикальные установки с повышенной производительностью, мощностью, остальными параметрами. Большинство таких устройств являются маломощными комплексами, предназначенными для использования в отдаленных районах и обеспечивающие отдельные дома или участки.

Для России важно создание именно таких устройств, так как потребности в энергоснабжении имеются только в труднодоступных и отдаленных регионах. Монтаж больших промышленных станций там не всегда возможен или нерентабелен.

Известны конструкции изобретателей Онипко, Третьякова и многих других конструкторов, имеющие оригинальные и элегантные варианты увеличения производительности и, соответственно, КПД. Большинство из них пока еще находятся в стадии разработки или подготовки к массовому производству, так как активная работа в этом направлении начата относительно недавно, еще не успела полностью реализоваться в виде промышленных изделий.

Читать еще:  Профиль для гипсокартона: какие профиля нужны для перегородок, стен и потолка

Способы увеличения КПД

Для того, чтобы увеличить КПД ветрогенератора, надо изменить в положительную сторону его рабочие или эксплуатационные характеристики. В первую очередь, надо повысить чувствительность крыльчатки к слабым и неустойчивым ветрам. Россия считается самой богатой ветровыми ресурсами страной, но это только из-за большой площади. Средние показатели в нашей стране относительно невысокие, скорости потока слабые или средние. Это вынуждает изыскивать пути повышении эффективности крыльчатки.

Одним из интересных предложений в этой области является «лепестковый парус», разработанный Евгением Цукановым. Он предложил идею создания своеобразной односторонней мембраны для воздушного потока, свободно пропускающей ветер в одну сторону и являющейся плотной непроницаемой преградой для потока обратного направления.

Согласно разработке Цуканова, полотно лопастей состоит из сетки, покрытой лепестками. Они прикреплены одной кромкой к сетке, свободно свисают вниз, частично перекрывая друг друга. При фронтальном направлении лепестки прижимаются к сетке, образуя непроницаемую поверхность, принимающую энергию ветра в полном объеме. Если направить поток с обратной стороны, лепестки под действием ветра поднимаются и пропускают воздух без сопротивления.

Этот вариант требует некоторых промышленных мероприятий, в частности, создании технологических линий по производству подобного полотна, но сама по себе идея весьма удачно позволяет устранить воздействие ветра на обратные стороны лопастей, что очень увеличит КПД вертикальных конструкций и позволит получить от них совершенно другие результаты.

Существуют и другие способы, например, использование диффузоров или защитных колпаков, отсекающих поток с противодействующих поверхностей. Все эти варианты конструкции имеют свои достоинства и недостатки, но, в целом, они намного эффективнее традиционных образцов, поэтому нуждаются в активной доработке, запуске в промышленное производство.

Применение ветрогенераторов

Назначение ветрогенератора (другое название ветроэлектрическая установка или ВЭУ) — преобразование кинетической энергии мощных воздушных потоков в электричество.

Энергетики выделяют две основные категории ВЭУ – промышленные и для частного применения (бытовые).

Первые, как правило, устанавливаются государством или же крупными энергетическими компаниями с последующим объединением в сеть, позволяющую создавать ветряные электростанции (ВЭС).

Их главная отличительная особенность – работа без применения какого-либо вида топлива. Соответственно, практически нет и никаких отходов.

Единственное условие эффективной работы ВЭУ – наличие постоянного и достаточно сильного ветра в среднегодовой перспективе.

Ветрогенераторы, в зависимости от способа ориентации осей вращения применяемых турбин, делятся на два типа:

— с вертикальным расположением (роторные, лопастные);

— с горизонтальным расположением (крыльчатые).

Конструкция последних является более эффективной, так как КИЭВ (коэффициент использования ветрового потока) даже далеко не на современных моделях составляет не менее 30%, в то в время как у вертикально-осевых ВЭУ с учетом тщательной наладки этот показатель не превышает 20 %.

Одними из основных причин интенсивного развития ветроэнергетики являются: постоянно дорожающие традиционные виды топлива (прежде всего: нефть, газ, уголь, торф), снижение их мировых запасов, а также проведение необходимых мероприятий по

Хотя теоретически получаемая с помощью такой технологии электроэнергия должна иметь минимальную себестоимость, имеются и определенные проблемы, препятствующие быстрому развитию этой отрасли.

Прежде всего – это стоимость самой ветроустановки. Причем основными составляющими здесь выступают такие необходимые компоненты, как

аккумуляторы и инверторы, преобразующие постоянный ток 24 В в необходимый промышленности переменный (50 Гц) напряжением 220 В. Поэтому говорить о себестоимости киловатта выработанной электроэнергии довольно сложно – при практически нулевых затратах на топливо, затраты на монтаж таких систем довольно велики.

Специалисты подсчитали, что с учетом этих факторов использование небольших автономных ветроустановок экономически, с учетом их стоимости, нецелесообразно. Другое дело, когда поблизости нет источников электроэнергии. В этом случае ВЭУ является вполне достойным конкурентом мобильным

При этом сейчас эксперты пришли к выводу, что наиболее эффективной схемой использования энергии ветра является преобразование его с помощью соответствующих ТЭНов в тепло, которое можно применить для обогрева помещений и обеспечения своевременного горячего водоснабжения загородного

Такое решение позволяет существенно упростить всю конструкцию, начиная с отказа от дорогостоящего оборудования и заканчивая возможностью организации простой, и при этом весьма действенной, автоматики.

Использование энергии ветра сегодня считается одним из самых перспективных направлений освоения

Принцип работы ветрогенератора

В упрощенном виде принцип работы ветрогенератора можно представить следующим образом.

Сила ветра приводит в движение лопасти, которые через специальный привод заставляют вращаться ротор. Благодаря наличию статорной обмотки, механическая энергия превращается в электрический ток. Аэродинамические особенности винтов позволяют быстро крутить турбину генератора.

Принцип работы

Дальше сила вращения преобразуются в электричество, которое аккумулируется в батарее. Чем сильнее поток воздуха, тем быстрее крутятся лопасти, производя больше энергии. Поскольку работа ветрогенератора основана на максимальном использовании альтернативного источника энергии, одна сторона лопастей имеет закругленную форму, вторая – относительно ровная. Когда воздушный поток проходит по закругленной стороне, создается участок вакуума. Это засасывает лопасть, уводя её в сторону. При этом создается энергия, которая и заставляет раскручиваться лопасти.

Схема работы ветрогенератора: показан принцип преобразования энергии ветра и действия внутренних механизмов

Во время своих поворотов винты также вращают ось, соединённую с генераторным ротором. Когда двенадцать магнитиков, закреплённых на роторе, вращаются в статоре, создаётся переменный электрический ток, имеющий такую же частоту, как и в обычных комнатных розетках. Это основной принцип того, как работает ветрогенератор. Переменный ток легко вырабатывать и передавать на большие расстояния, но невозможно аккумулировать.

Принципиальная схема ветрогенератора

Для этого его нужно преобразовать в постоянный ток. Такую работу выполняет электронная цепь внутри турбины. Чтобы получить большое количество электроэнергии, изготавливаются промышленные установки. Ветровой парк обычно состоит из нескольких десятков установок. Благодаря использованию такого устройства дома, можно получить существенное снижение расходов на электроэнергию. Принцип действия ветрогенераторов позволяет применять их в таких вариантах:

  • для автономной работы;
  • параллельно с резервным аккумулятором;
  • вместе с солнечными батареями;
  • параллельно с дизельным или бензиновым генератором.

Если поток воздуха движется со скоростью 45 км/час, турбина вырабатывает 400 Вт электроэнергии. Этого хватает для освещения дачного участка. Данную мощность можно накапливать, собирая её в аккумуляторе.

Специальное устройство управляет зарядкой аккумуляторной батареи. По мере уменьшения заряда вращение лопастей замедляется. При полной разрядке батареи лопасти снова начинают вращаться. Таким способом зарядка поддерживается на определённом уровне. Чем сильнее воздушный поток, тем больше электроэнергии может произвести турбина.

Читать еще:  Термостойкие краски для печей и каминов: лидирующая десятка популярных жаропрочных составов - Электромонтаж

Система торможения вращения лопастей

Чтобы установка не вышла из строя при сильном напоре воздуха, она снабжена специальной системой торможения. Если раньше движущиеся магниты индуцировали ток в обмотках, то теперь данная сила используется для остановки вращающихся магнитов. Для этого создается короткое замыкание, при котором замедляется движение ротора. Возникающее противодействие замедляет вращение магнитов.

Конструкция ветрогенератора и узлов

При ветре больше 50 км/час тормоза автоматически замедляют вращение ротора. Если скорость движения воздуха доходит до 80 км/час, тормозная система полностью останавливает лопасти. Все части турбины сконструированы так, чтобы максимально использовалась воздушная энергия. Когда ветер дует, лопасти вращаются, и генератор преобразует их движение в электричество. Совершая двойное преобразование энергии, турбина производит электричество из обычного перемещения воздушных масс.

Внешне ветрогенератор напоминает флюгер — направлен в ту сторону, откуда дует ветер

Данное устройство весьма полезно не только в каких-то экстремальных условиях, но и в обычной повседневной жизни. Довольно часто системы ветрогенераторов применяются на дачах или в тех населенных пунктах, где регулярно бывают перебои с подачей электроэнергии. Самостоятельно сделанный автономный источник электричества имеет такие преимущества:

  • установка экологически чистая;
  • отсутствует потребность её заправки топливом;
  • не накапливаются какие-либо отходы;
  • устройство работает очень тихо;
  • имеет большой срок эксплуатации.

Все ветрогенераторы работают по одинаковой схеме. Сначала полученное от давления ветра переменное напряжение преобразуется в постоянный ток. Благодаря этому заряжается аккумулятор. Затем инвертором снова производится переменный ток. Это нужно для того, чтобы светились лампочки; работал холодильник, телевизор и т. д. Благодаря аккумуляторной батарее, можно пользоваться электроприборами в безветренную погоду. Кроме того, во время сильных порывов ветра напряжение в сети остаётся стабильным.

Увеличение мощности установки

Конструкцию некоторых ветрогенераторов имеет ветровой датчик. Он собирает данные о направлении и скорости воздушного потока. Генератор ветряка не может выдать больше номинальной мощности, однако, в любое оборудование заложен запас он может составлять от 10-30% от расчетных. На этот «запас» рассчитывать не стоит, так как программно и конструктивно в ветрогенератор заложена защита от перегрузок.

Увеличить мощность ветроустановки можно с помощью системы резервирования электроэнергии на базе аккумуляторных батарей.

Выходная мощность (кВт) ветрогенератора определяется мощностью инвертора. Исходя из выдаваемых киловатт, можно определиться с максимальным количеством подключаемых электроприборов. Чтобы увеличить выходную мощность установки, необходимо параллельно подключить несколько инверторов.

Для трехфазных схемы электропитания необходимо установить по инвертору на каждую фазу.

Если мощности на фазе недостаточно, увеличивают количество инверторов, если это предусмотрено производителем. При отсутствии ветра продолжительность подачи электроэнергии прекращается. Генерации энергии не происходит, поэтому к ветрогенератору подключают накопители энергии, смотрите схему ниже.

Схема увеличения мощности и емкости ветрогенератора

Накопитель энергии состоит из связки инвертор-батарея. О батареях вы можете прочитать в этой рубрике, а о накопителях в этой. Увеличение ёмкости аккумуляторных батарей увеличивает запас хранимой энергии, но и длительность зарядки. Скорость зарядки аккумулятора зависит от мощности генератора и количества инверторов, которые тоже могут пропустить через себя только ту мощность, которая заложена производителем. Соответственно, скорость зарядки аккумуляторов зависит от пропускной способности инвертора и не зависит от мощности ветрогенератора.

Выбор ветрогенератора

Самые качественные ветряки производят в Германии, Франции и Дании. Эти страны делают ветровые установки для снабжения электричеством жилого частного сектора, фермерских хозяйств, школ, небольших торговых точек. В России из-за низкой стоимости электроэнергии и негласной монополии на продажу электроэнергии ветроустановки, солнечные панели и другие виды альтернативной энергии не сильно распространены.

Мобильный ветрогенератор подойдет для нефтепромышленности или монтажных бригад, которые ведут строительство в полях (прототип)

Но высокая стоимость подключения удаленных объектов от электросетей (есть до сих пор не электрифицированные деревни), хамство чиновников, длительные процедуры хождения и получения ТУ у монопольных компаний вынуждают собственников использовать альтернативную энергию своих объектов.

Прежде все вы должны понимать, что КПД ветровой установки составляет около 60%, есть зависимость от скорости ветра, и потребуется периодически проводить ТО. Если вы все-таки решили сделать выбор в пользу ветрогенератора, следует знать. Выбирать ветрогенератор нужно исходя из конкретных обстоятельств его применения. Существуют новые разработки и модели: с повышенным КПД, вертикальные, горизонтальные, ортогональные, безлопастные.

Подсчитывается активная и резистивная мощность всех потребителей энергии.

Для предприятий или частного дома эти данные могут быть в проекте или счетах за электроэнергию. Если вам необходимо обеспечить электроэнергией дачу выбирается модель ветроустановки на 1-3 кВт, инвертор нужно небольшой мощности и можно обойтись без аккумуляторных батарей. Принцип наличия дачной ветроустановки прост: есть ветер — есть электричество, нет ветра — работаем в огороде или по хозяйству. Простой ветрогенератор можно сделать самому, достаточно собрать необходимые материалы и соединить их вместе.

Для частного дома постоянного проживания, такой принцип не подойдет. При частом отсутствии ветра следует придать особое значение аккумулятору. Здесь нужна большая ёмкость. Однако, чтобы он быстрее заряжался, сам генератор электричества также должен быть большой мощности. То есть отдельные узлы установки тесно взаимосвязаны друг с другом. Более надежная комбинация — симбиоз с дизель-генератором и солнечными панелями. Это 100% гарантия наличия электричества в доме, но и более дорогая.

При наличии скважины вы будете полностью энергонезависимые от внешних сетей.

Сейчас большое распространение получили коммерческие ветровые установки. Получаемая с их помощью электроэнергия продается различным предприятиям, испытывающим недостаток в энергоснабжении. Обычно такие электростанции состоят из нескольких ветрогенераторов различной мощности. Вырабатываемое ими переменное напряжение в 380 вольт подается непосредственно в электросеть предприятия. Кроме того, ветрогенераторы могут использоваться для зарядки большого числа аккумуляторных батарей, с которых потом преобразованная в переменное напряжение энергия также подается в электрическую сеть.

Ветрогенераторы российского производства

В большинстве случаев владельцы предприятий ставят ветроустановки, солнечные панели и дизель-генераторы для нужд собственного производства. Получение разрешение на продажу электричества в России — это, скажем так, отдельная история. После проведения энергоаудита, высвобождаются мощности, например, путем замены ламп освещения на светодиодные. Подсчитывается срок окупаемости, при отсутствии бюджета можно разделить модернизацию на этапы.

Технологии развиваются. Создаются энергонезависимые дома, офисы, станции на земле и воде. Наша команда инженеров поможет вам с выбором, расчетом, проектом и монтажом оборудования. Готовы ответить на ваши вопросы в комментариях или через форму.

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector