✅ Контроллер для ветрогенератора своими руками. ВЕТРОГЕНЕРАТОР ИСТОЧНИК ЭНЕРГИИ СВОИМИ РУКАМИ — dnp-zem.ru

Содержание

Новая версия контроллера (балластного регулятора напряжения) для ветрогенератора

В прошлых статьях я уже описывал схему изготовления контроллера для ветрогенератора на основе автомобильного реле-регулятора (РР). Также в тех статьях есть фото и видео работы этого балластного регулятора. Принцип работы очень простой, реле-регулятор автомобильный при 14.2 вольта отключает щетку генератора и он перестаёт заряжать аккумулятор в автомобиле и таким образом АКБ не перезаряжается. А для работы с ветрогенератором сигнал от РР используется для включения дополнительной нагрузки к АКБ, которая сжигает лишнюю энергию и не даёт напряжению выросли выше 14.2 вольта.

В оригинальной схеме балласт подключается с помощью транзистора. Реле-регулятор подключается к АКБ и пока напряжение ниже 14.2 вольта, то РР подаёт минусовое напряжение не затвор транзистора и он закрыт. А как только напряжение на АКБ достигнет 14.2 вольта, то РР отключает минус и транзистор открывается, и через него идет ток на балласт. При этом РР работает очень быстро и держит напряжение 14.2 вольта, оно несколько раз в секунду открывает и закрывает транзистор обеспечивая плавный отбор лишней мощности. И собственно по этому нельзя в этой схеме использовать обычное контактное реле, оно просто не выдержит частоту включения-выключения 10. 100Гц, будет сильно дребезжать контактами пока они не отгорят.

Сама схема выглядит вот так (ниже рисунок) дополнительное описание — Балластный регулятор для ветрогенератора схема и описание

Если у вас нет реле-регулятора с управлением по минусу то можно сделать балластный контроллер на основе реле генератора ВАЗ, и других автомобилей где реле отключает плюсовую щётку генератора и об этом далее.

Контроллер на реле ВАЗ, с управлением по плюсу

Ниже рисунок со схемой балластного контроллера с реле генератора ВАЗ. Так как выход реле на щётку плюсовой, то есть она отключает плюс, а не минус как реле ГАЗ, то нужно ставить два транзистора.

Когда напряжение ниже 14.2В то плюсовое напряжение подаётся на контакт «Ш», оно подаётся на затвор первого транзистора и он открывается (резистор затвора на минус подключается). Далее этот транзистор подаёт через себя минус (исток-сток) на затвор второго транзистора, и тот минусом закрывается, и через себя не пропускает минус на балласт.

А когда напряжение поднимается выше 14.2В то плюс пропадает с выхода реле регулятора. Первый транзистор закрывается разряжая затвор через резистор на минус. И на затвор второго транзистора перестаёт поступать минус, и он открывается заряжается затвор через резистор от плюса. И он на балласт подаёт минус, балласт включается. Ниже рисунок схемы на двух транзисторах и реле ВАЗ.

Из минусов такой схемы это некоторая сложность с подключением транзистора, хотя куда ещё проще, но всё-таки многие не могут и у них не получается. А так-же бывает что транзисторы сгорают, не понятно из-за чего, но такое случалось не только у меня. Вдаваться в описание возможных причин не будем, в общем я нашёл другой выход, и об этом далее.

Твёрдотельное реле вместо транзистора

Транзистор в схеме, которая выше я заменил на твёрдотельное реле и всё стало гораздо проще и надёжнее. Теперь для сборки самого контроллера надо приобрести всего две детали, ну ещё маленькую светодиодную лампочку и балласт. Принципиально схема выглядит вот так (ниже рисунок).

Для изготовления понадобятся:
1. Реле-регулятор любой с управлением по плюсу, это регуляторы ВАЗ например
2. Твёрдотельное реле на постоянный ток
3. Резистор или светодиодную лампочку маломощную
4. Балласт, в качестве которого лампочки или большой резистор

Ветрогенератор подключается напрямую на аккумулятор и с балластным контроллером никак не связан. А сам контроллер подключается тоже к аккумулятору, но с ветряком никак не связан, он просто отслеживает напряжение аккумулятора и при превышении 14.2 вольта включает балласт чтобы остановить рост напряжения и сжечь лишнюю энергию. Поэтому не важно что заряжает аккумулятор, это может быть ветрогенератор, солнечные батареи, или зарядное устройство, контроллер всё равно будет включать балласт при превышении 14.2 вольта. Таким образом можно излишки энергии использовать даже с солнечных батарей, и эти излишки можно пустить на подогрев воды заменив лампочки на водонагревательный ТЭН.

И если говорить о работе самого контроллера, то балласт он включает не резко, а мягко, импульсами, отбирая только лишнюю энергию. Ветрогенератор при этом не получает удары мощной нагрузкой, как это бывает с другими контроллерами. Контроллеры с мощными балластами обычно полностью подключают нагрузку и происходит резкий удар по ветряку, и он начинает замедляться и пока напряжение АКБ не просядет до заданного гистерезиса ветряк будет нагружен мощной нагрузкой и останавливается. И когда акб заряжены то ветряк может получать несколько таких ударов балласта, от этого нагрузки большие на лопасти и подшипники, обмотку генератора. Так-же есть контроллеры, которые просто тормозят генератор при превышении напряжения, и они тоже резко включают торможение практически замыкая генератор, что тоже очень плохо. А этот балластный регулятор работает как ШИМ(PWM) контроллер мягко скидывая только излишки на балласт, только здесь импульсный принцип работы.

Кстати потребление контроллера совсем небольшое, порядка 20мА, и реле твёрдотельное включается только во время скидывания лишней энергии и в отличие от контактных реле потребляет всего 15мА.

Для наглядности работы данной схемы контроллера я записал небольшое видео. На видео реальная работа контроллера с реальным ветрогенератором. Правда в в день съёмки ветерок был совсем небольшой, поэтому чтобы было видно как происходит сброс лишней энергии я отключил две из трёх лампочек балласта, чтобы было видно по яркости свечения лампочки.

На этом всё, всем удачи в повторении подобной конструкции балластного регулятора для ветряка. Ниже несколько фото этого контроллера.

Дополнительная информация по схеме и описания работы в других статьях:

Контроллер для ветрогенератора

Контроллер – это электронное устройство, отвечающее за преобразование переменного напряжения, вырабатываемого генератором в постоянное, и контроль заряда аккумуляторных батарей. Наличие контроллера в схеме работы ветровой установки позволяет осуществлять работу ветрового генератора в автоматическом режиме вне зависимости от внешних факторов (скорость ветра, погодные условия и т.д.).

Принцип действия

Для различных типов ветровых генераторов используют различные виды и конструкции контроллеров, но основные принципы работы подобных устройств, можно разделить на два типа, это:

  1. Для ветровых установок относительно не большой мощности: при достижении напряжения на клеммах аккумуляторных батарей выше 15,0 В, контроллер перемыкает обмотки генератора, что приводит к остановке вращения лопастей ветровой установки. При снижении напряжения до 13,5 В, контроллер дает команду на разблокировку обмоток, и установка начинает работать в нормальном режиме.
  2. Для мощных ветровых установок – в комплекте с электронным блоком контроллера монтируется балластный резистор с большим сопротивлением. При достижении напряжения на клеммах аккумуляторов в 14,0 – 15,0 В, контроллер не отключает ветровую установку, а «лишнюю» энергию сжигает на балластном сопротивлении. В качестве балласта могут быть использованы нагревательные элементы (ТЭНы), служащие для нагрева воды в системах горячего водоснабжения или отопления зданий и сооружений.

Основные характеристики

При выборе контроллера, используемого в схемах ветровых генераторов, необходимо изучить технические характеристики данного электронного устройства.

Основными характеристиками, которые указывает производитель, служащими критериями выбора подобных устройств, являются:

  • Номинальное напряжение, измеряемое в Вольтах;
  • Рабочая мощность, измеряемая в Ваттах;
  • Максимальная мощность, измеряемая в Ваттах;
  • Максимальный ток, измеряемый в Амперах;
  • Сброс балластной энергии (что может быть использовано);
  • Условия эксплуатации (рабочая температура, влажность, высота над уровнем моря);
  • Способность к дистанционной передаче данных о работе ветровой установки;
  • Габаритные размеры;
  • Вес устройства.

Читать еще:  Вставка в бетонные кольца

В настоящее время отечественные и зарубежные компании, специализирующиеся на производстве альтернативных источников энергии, а также их комплектующих, выпускают несколько видов контроллеров, успешно работающих в ветровых установках, это:

  • PWM (ШИМ) контроллеры – устройства с широтно-импульсной модуляцией (ШИМ). В аппаратах данного вида осуществляется процесс управления мощностью, путём изменения импульсов, при постоянной частоте.

Достоинствами данного вида являются:

  • Относительно не большие габаритные размеры, в сравнении с аналогами;
  • Способность к быстродействию в процессе работы;
  • Надежность конструкции.
  • МРРТ контроллеры – как правило используются в солнечных установках, но могут применяться и в комплекте с ветровыми генераторами. Основой работы устройств данного вида является способность определять точку максимальной мощности, которая характеризуется напряжением и силой тока в конкретный момент времени.

Достоинствами данного вида являются:

  • Являются наиболее эффективными устройствами, в сравнении с аналогами.

Основной недостаток – более высокая стоимость.

Контроллер для ветрогенератора и солнечных панелей

Для работы с ветровым генератором можно использовать контроллер, изначально предназначенный для работы с солнечной электростанцией, главным условием для этого, является наличие возможности, у конкретной модели, выполнить настройку «выхода» (load).

Ветровой генератор подключается на вход используемого контроллера, единственное, что необходимо сделать, это установить диодный мост, для преобразования переменного напряжения, вырабатываемого генератором в постоянное, на котором осуществляется работа аккумуляторных батарей.

В контроллерах, используемых в солнечных электростанциях, отсутствует диодный мост на входной группе, т.к. солнечные батареи производят постоянный электрический ток.

Аккумуляторные батареи подключаются в соответствие со схемой используемого контроллера, а на «выход» подключается балластное сопротивление, в качестве которого может быть использована любая нагрузка, единственное условие при этом – мощность нагрузки должна соответствовать мощности генератора.

После того, как контроллер включен по выше обозначенной схеме, необходимо выполнить настройки режимов работы, задающие пороги отключения и включения балласта.

Контроллер своими руками (схема)

Зная основы электротехники и умея работать паяльников, можно изготовить контроллер ветровой установки самостоятельно.

В настоящее время есть возможность найти различные схемы подобных устройств различных видов, мощности и прочих технических характеристик, для этого достаточно зайти в сеть интернет и обраться к поиску по требуемому заданию или найти техническую литературу в специализированных магазинах и издательствах.

Один из вариантов схемы контроллера и включение его в схему работы ветрогенератора, приведен ниже:

Данная схема отличается простотой, но способна обеспечить работу ветровой установки в автоматическом режиме.

Средние цены

Как правило контроллер для ветровой установки изготавливается компанией, производящей ветровые генераторы и поставляется комплектно с прочим оборудование. Однако, по ряду причин, иногда появляется потребность приобрести данный прибор отдельно от основного комплекта. В этом случае необходимо выбрать устройство в соответствии с техническими характеристиками системы и бренда производителя, который является предпочтительнее для каждого индивидуального пользователя.

На рынке данного оборудования представлены следующие, наиболее популярные модели:

Технические характеристики:

  • Мощность — 0.2 кВт;
  • Максимальная входная мощность – 0,3 кВт;
  • Напряжение постоянного тока – 12,0 В;
  • Технология – PWM;
  • Назначение – универсальное (ветрогенератор/солнечная батарея).

Стоимость устройства – от 9000,00 рублей.

  • Мощность — 0.4 кВт;
  • Максимальная входная мощность – 0,6 кВт;
  • Напряжение постоянного тока – 12,0 В;
  • Технология – PWM;
  • Назначение – универсальное (ветрогенератор/солнечная батарея).

Стоимость устройства – от 12000,00 рублей.

  • Мощность — 1.0 кВт;
  • Максимальная входная мощность – 2,0 кВт;
  • Напряжение постоянного тока – 24,0 В;
  • Технология – PWM;
  • Назначение – универсальное (ветрогенератор/солнечная батарея).

Стоимость устройства – от 22000,00 рублей.

  • «Exmork ZKJ-B 1.5 KW-48 Vdc», производство Россия.
  • Мощность — 1.5 кВт;
  • Максимальная входная мощность – 2,0 кВт;
  • Напряжение постоянного тока – 48,0 В;
  • Технология – PWM;
  • Внешний блок – ТЭНы;
  • Температура эксплуатации — -30,0 — +65,0 ℃;
  • Габаритные размеры – 430х340х220 мм;
  • Габаритные размеры внешнего блока ТЭНов – 360х330х200 мм;
  • Вес контроллера – 9,0 кг;
  • Вес блока внешних ТЭНов – 5,0 кг.

Стоимость устройства – от 27000,00 рублей.

  • «Exmork ZKJ-B 2KW-24 Vdc», производство Россия.
  • Мощность — 2.0 кВт;
  • Максимальная входная мощность – 2,5 кВт;
  • Напряжение постоянного тока – 24,0 В;
  • Технология – PWM;
  • Внешний блок – ТЭНы;
  • Температура эксплуатации — -30,0 — +40,0 ℃;
  • Габаритные размеры – 590х490х315 мм;
  • Габаритные размеры внешнего блока ТЭНов – 490х460х310 мм;
  • Вес контроллера – 23,0 кг;
  • Вес блока внешних ТЭНов – 15,5 кг.

Стоимость устройства – от 46000,00 рублей.

  • «Exmork ZKJ-B 5KW-48Vdc», производство Россия.
  • Мощность — 5.0 кВт;
  • Максимальная входная мощность – 5,5 кВт;
  • Напряжение постоянного тока – 48,0 В;
  • Технология – PWM;
  • Внешний блок – ТЭНы;
  • Температура эксплуатации — -30,0 — +40,0 ℃;
  • Габаритные размеры – 590х490х315 мм;
  • Габаритные размеры внешнего блока ТЭНов – 490х460х310 мм;
  • Вес контроллера – 43,0 кг;
  • Вес блока внешних ТЭНов – 17,0 кг.

Стоимость устройства – от 89000,00 рублей.

Где купить

При необходимости приобрести контроллер для находящейся в эксплуатации ветровой установки, лучше всего обратиться к предприятию ее изготовившую или дилерам этой организации. Это поможет избежать ошибок при подключение приобретаемого устройства и позволит избежать лишних финансовых затрат, т.к. компании стараются поддерживать своих клиентов, создавая себе положительный имидж и нарабатывая клиентскую базу.

При желании купить более дешевый аппарат, можно обратиться к сети интернет, где представлено достаточное количество подобных изделий китайского производства. Кроме этого, в сети можно ознакомиться с характеристиками предлагаемых к реализации контроллеров различных брендов и компаний производителей из различных стран.

Плюсы и минусы

Наличие дополнительных устройств, в схеме работы ветровых установок, позволяет улучшить параметры получаемой электрической энергии.

Контроллеру, как элементу подобной схемы, присущи следующие достоинства:

  • Позволяет осуществлять работу ветровой установки в автоматическом режиме.
  • Использование контроллера, продлевает сроки эксплуатации аккумуляторных батарей, обеспечивая, для них, безопасные режимы работы.
  • Способность наиболее полного использования вырабатываемой ветровым генератором энергии – нагрев ТЭНов, или иной нагрузки, в моменты, когда аккумуляторы полностью заряжены.
  • Улучшаются условия эксплуатации ветровой установки (легкий запуск при слабом ветре и т.д.).

К недостаткам контроллера, установленного в схему работы ветрового генератора, можно отнести увеличение стоимости комплекта оборудования, а также вероятность поломки ветровой установки, работающей в автоматическом режиме, в случае выхода их строя данного элемента схемы управления.

Как сделать контроллер для ветрогенератора своими руками: устройство, принцип работы, схема сборки

Механическая конструкция ветрогенератора в чистом её виде представляет собой только часть полноценной ветряной энергетической установки. Полностью пригодная к эксплуатации система, помимо механической конструкции, имеет ещё ряд электронных узлов.

Так, например, обязательно необходим контроллер для ветрогенератора – устройство, функционально предназначенное для стабилизации параметров заряда АКБ в процессе работы ветряка.

Разберемся, какие функции выполняет прибор, и приведем схемы сборки контроллера своими руками. Кроме того, обозначим особенности работы и целесообразность покупки китайского электронного агрегата для ветряка.

Ветрогенераторы и контроллеры заряда АКБ

Если механический ветряк вполне возможно сделать самостоятельно, можно ли сделать своими руками ещё и контроллер ветряка?

Чтобы иметь какое-то представление о контроллерах ветрогенераторов и успешно воспроизводить такую технику своими руками, не лишними будут базовые сведения об этих приборах.

Контроллер, обслуживающий аккумуляторные батареи, призван в первую очередь управлять процессом заряда АКБ. Это его основная функция, но ее условно следует разделить ещё на целый ряд подфункций.

Например, одним функционалом отслеживается ток заряда и ток саморазряда. Другой функционал реализует действия, направленные на измерение температуры и давления. Третий отвечает за компенсацию разницы энергетических потоков, когда одновременно с потреблением тока нагрузкой осуществляется заряд АКБ.

Приборы промышленного изготовления наделены полноценным функционалом. А вот относительно любительских конструкций такого не скажешь. Устройства, выполненные на базе простейших схемных решений в домашних условиях своими руками – это контроллеры, далёкие от совершенных моделей.

Тем не менее, они работают и достаточно продуктивно позволяют эксплуатировать разные виды ветрогенераторов. Как правило, в самодельных конструкциях реализована лишь одна функция – защита от перенапряжения и от глубокой разрядки.

Почему внедрение контроллера в систему ветряка является обязательным моментом?

Потому что в режиме энергетической подпитки АКБ без применения контроллера следует ожидать неприятных последствий:

  1. Деградацию структуры аккумулятора по причине неконтролируемых химических процессов.
  2. Неконтролируемый рост давления и температуры электролита.
  3. Утрату аккумулятором свойств подзарядки в связи с имеющим место долговременным разрядом.

Контроллер заряда для схемы ветрогенераторной установки выполняется, как правило, в виде отдельного электронного модуля. Этот модуль съёмный и быстро отключаемый. Приборы промышленного изготовления обязательно оснащаются индикацией режимов и состояний – световой или визуально передаваемой через дисплей.

На практике могут применяться два вида устройств – встраиваемые непосредственно в корпус ветрогенератора и подключаемые к аккумуляторной батарее.

Схемные решения для сборки своими руками

За всё время с момента появления первых самодельных ветряков количество схемных решений контроллеров выросло многократно. Многие из схемных разработок далеко не совершенны, но есть и такие варианты, на которые следует обратить внимание.

Читать еще:  Вентиляция своими руками: в доме, квартире, схемы

Для бытового применения, конечно же, актуальными являются простые схемы, требующие небольших финансовых вложений, эффективные и надёжные.

Отталкиваясь от этих требований, начать можно с контроллера для ветрогенератора, созданного на базе реле-регуляторов автомобилей. В схеме применимы как реле с минусовым управляющим контактом, так и реле с плюсовым управляющим контактом.

Этот вариант привлекает малым количеством деталей и простейшим монтажом. Потребуется всего одно реле, один силовой транзистор (полевой), один резистор.

Схема носит название «балластная», так как в ней используется дополнительная нагрузка в виде обычной лампочки накаливания. Таким образом, список деталей пополнится ещё одним элементом – лампой.

Используется автомобильная лампа (или несколько ламп) на 12 вольт в зависимости от мощности системы. Также вместо этого элемента допустимо применять нагрузочное сопротивление иного типа: мощный резистор, электронагреватель, вентилятор и т.п.

Работа «балластной» схемы с минусом

Действие автомобильного реле-регулятора напрямую связано с уровнем заряда аккумуляторной батареи. Если напряжение на клеммах АКБ поднимается выше 14.2 вольт, реле срабатывает и размыкает минусовую цепь силового транзистора.

В свою очередь на транзисторе открывается переход, подключающий лампу прямого накала к аккумулятору. В итоге зарядный ток сбрасывается через нить лампы накаливания. При понижении напряжения на клеммах АКБ – обратный процесс. Так осуществляется поддержка стабильного уровня напряжения батареи.

Как действует «балластная» схема с плюсом

Слегка модернизированным вариантом «балластного» контроллера заряда для ветряка является вторая схема на реле-регуляторе с плюсовым управляющим контактом. Например, подойдут реле от автомобилей марки «ВАЗ».

Отличие от предыдущей схемы – применение твердотельного реле, например, GTH6048ZA2 на ток 60A вместо транзистора. Преимущества очевидны: схема выглядит ещё проще и при этом обладает большей надёжностью и эффективностью.

Особенность этого простого решения – прямое подключение на клеммы аккумулятора генератора ветряка. Проводники контроллера заряда тоже «посажены» непосредственно на контакты аккумулятора.

По факту обе этих части схемы никак не связаны между собой. Напряжение с ветрогенератора подаётся на батарею постоянно. Когда напряжение на клеммах АКБ достигает значения 14.2 Вт, твердотельное реле подключает нагрузку для сброса. Так аккумулятор защищается устройством от перезаряда.

Здесь балластной нагрузкой может выступать не только лампа накаливания. Вполне реально подключить любое иное устройство, рассчитанное на ток до 60 А. Например, электрический трубчатый нагреватель.

Что ещё важно в этой схеме – действие твердотельного реле характеризуется плавно нарастающей амплитудой. По сути, налицо эффект профессионально изготовленного ШИМ-контроллера.

Усложнённый вариант схемы контроллера

Если предыдущий вариант схемного решения контроллера заряда АКБ только лишь напоминает устройство ШИМ (широтно-импульсная модуляция), здесь данный принцип реализуется конкретно.

Эта схема контроллера для ветряка с трёхфазным генератором отличается некоторыми сложностями, так как предполагает использование микросхем – в частности, операционных усилителей на полевых транзисторах в составе сборки TL084.

Однако на монтажной плате всё выглядит не так сложно, как на бумажном листе.

Так же, как и в предыдущих решениях, используется реле в качестве коммутационного элемента для балластной нагрузки. Реле рассчитано на работу с 12-вольтовым аккумулятором, но при желании можно подобрать модель на 24 Вт.

Балластный резистор сделан в виде мощного сопротивления (намотка на керамике нихром). Для регулировки рабочего диапазона напряжений (11.5-18 Вт) в схеме используются переменные резисторы, включенные в цепь управления микроэлектронной сборки TL084.

Работает такой контроллер заряда аккумулятора ветряка следующим образом. Трёхфазный ток, полученный от ветрогенератора, выпрямляется силовыми диодами.

На выходе диодного моста образуется постоянное напряжение, которое подаётся на вход схемы через контакты реле, дополнительный диод, аккумулятор и дальше на внутрисхемный стабилизатор (78L08) и на вход сборки TL084.

Момент переключения триггера в одно из состояний определяется значениями переменных резисторов (Low V и High V) нижнего и верхнего порога напряжений.

Пока на клеммах аккумуляторной батареи присутствует напряжение, не превышающее 14.2 вольта (удовлетворяющее значению настройки R High V), выполняется заряд. Как только значения изменяются в сторону увеличения, операционный усилитель TL084 подаёт сигнал на базу транзистора, которым управляется реле.

Происходит срабатывание реле, цепь питания схемы разрывается и замыкается на балластный резистор. Сброс по балласту проходит до момента разряда аккумулятора, близкого к значению настройки переменного резистора Low V.

Как только это значение достигнуто, вторым операционным усилителем TL084 схема переключается в обратное состояние. Так осуществляется работа контроллера.

Китайская электронная альтернатива

Изготовление контроллера ветрогенератора своими руками – дело престижное. Но учитывая скорость развития электронных технологий, нередко смысл самостоятельной сборки теряет свою актуальность. К тому же большая часть предлагаемых схем уже морально устарела.

Получается дешевле купить уже готовый продукт, сделанный профессионально, с высоким качеством монтажа, на современных электронных компонентах. Например, приобрести подходящее устройство по разумной стоимости можно на Aliexpress.

Ассортимент предложений на китайском сайте впечатляет. Контроллеры для ветрогенераторов под различный уровень мощности продаются по цене от 1000 руб. Если отталкиваться от этой суммы, в плане сборки аппарата своими руками игра явно не стоит свеч.

Так, например, среди предложений китайского портала есть модель для 600-ваттного ветряка. Устройство стоимостью 1070 руб. пригодно для работы с аккумуляторами 12/24 вольта, в режиме рабочего тока до 30 А.

Качественный всепогодный корпус контроллера размерами 100х90 мм оснащён мощным радиатором охлаждения. Исполнение корпуса соответствует классу защиты IP67. Диапазон внешних температур от – 35 до +75ºС. На корпусе выведена световая индикация режимов состояния ветрогенератора.

Спрашивается, какой резон тратить время и силы на сборку простенькой конструкции своими руками, если есть реальная возможность купить нечто подобное и технически серьёзное?

Ну а если этой модели недостаточно, у китайцев имеются варианты совсем «крутые». Так, среди новых поступлений отметилась модель мощностью 2 кВт под рабочее напряжение 96 вольт.

Правда, стоимость этого контроллера уже в пять раз дороже предыдущей разработки. Но опять же, если соизмерять затраты на производство нечто подобного своими руками, покупка выглядит рациональным решением.

Единственное что смущает в китайских продуктах – они имеют свойство неожиданно прекращать работу в самых неподходящих случаях. Поэтому купленное устройство часто приходится доводить до ума – естественно, своими руками. Но это значительно легче и проще, чем делать контроллер заряда ветрогенератора своими руками с нуля.

Для любителей самоделок на нашем сайте есть серия статей, посвященная изготовлению ветрогенераторов:

Выводы и полезное видео по теме

Желание сделать оборудование для домашнего применения своими руками иногда сильнее более простого решения – покупки недорогого устройства. Что из этого получилось, смотрите в видеоролике:

Оценивая перспективы изготовления электроники собственными силами независимо от её назначения, приходится столкнуться с мыслью, что век «самоделкиных» завершается.

Рынок перенасыщен готовыми электронными устройствами и модульными комплектующими практически под каждый бытовой продукт. Электронщикам-любителям теперь остаётся единственное дело – заниматься сборкой домашних конструкторов.

Есть, что дополнить, или возникли вопросы по теме сборки и использования контроллеров для ветрогенератора? Можете оставлять комментарии, задавать вопросы и добавлять фотографии своих самоделок – форма для связи находится в нижнем блоке.

Ветрогенератор простой домашний своими руками

Главная страница » Ветрогенератор простой домашний своими руками

Альтернативная энергия, добываемая посредством «ветряной мельницы» — заманчивая идея, охватившая огромное число потенциальных потребителей электричества. Что же, электромехаников разного калибра, пытающихся сделать ветрогенератор своими руками, можно понять. Дешёвая (практически бесплатная) энергетика всегда ценилась на вес золота. Между тем установка даже простейшего домашнего ветрогенератора даёт реальную возможность получить бесплатный ток. Но как сделать домашний ветрогенератор своими руками? Как заставить работать систему энергии ветра? Попробуем раскрыть занавес тайны с помощью опыта бывалых электромехаников.

Основа домашнего ветрогенератора

Тема изготовления и установки самодельных ветряных генераторов очень широко представлена в сети Интернет. Однако большая часть материала – это банальное описание принципов получения электрической энергии от природных источников.

Теоретическая методика устройства (установки) ветрогенераторов уже давно известна и вполне понятна. А вот как обстоят дела практически в бытовом секторе – вопрос, раскрытый далеко не полностью.

Чаще всего в качестве источника тока для самодельных домашних ветрогенераторов рекомендуют выбирать автомобильные генераторы или асинхронные двигатели переменного тока, дополненные неодимовыми магнитами.

Процедура переделки асинхронного электродвигателя переменного тока под генератор для ветряка. Заключается в изготовлении «шубы» ротора из неодимовых магнитов. Крайне сложный и долговременный процесс

Однако оба варианта требуют существенной доработки, нередко сложной, дорогостоящей, отнимающей много сил и времени.

Куда проще и легче во всех отношениях установить электродвигатели, подобные тем, что выпускались прежде и выпускаются теперь фирмой Ametek (пример) и другими.

Читать еще:  Wi-Fi выключатели: особенности управления светом для «умного дома», характеристики брендов Xiaomi и Sonoff, настройка выключателя

Для домашней ветрогенераторной установки подходят моторы постоянного тока напряжением 30 – 100 вольт. В режиме генератора от них можно получить примерно 50% от заявленного рабочего напряжения.

Следует отметить: при работе в режиме генерации электродвигатели постоянного тока требуется раскручивать до скорости выше номинальной.

При этом каждый отдельно взятый мотор из десятка одинаковых экземпляров, может показывать совершенно разные характеристики.

Поэтому оптимальный подбор электродвигателя к домашнему ветрогенератору логичен при следующих показателях:

  1. Высокий параметр рабочего напряжения.
  2. Низкий параметр RPM (угловая скорость вращения).
  3. Высокое значение рабочего тока.

Так, удачным под установку выглядит мотор производства фирмы Ametek с рабочим напряжением 36 вольт и угловой скоростью вращения — 325 об/мин.

Именно такой электродвигатель используется в конструкции ветрогенератора – установки, что описана ниже в качестве примера домашнего ветряка.

Мотор постоянного тока для домашнего ветрогенератора. Оптимальный вариант из числа продуктов, изготовленных фирмой Ametek. Также удачно подходят подобные электродвигатели производства других фирм

Проверить эффективность любого похожего мотора несложно. Достаточно подключить к электрическим выводам обычную автомобильную лампу накаливания на 12 вольт и крутануть вал мотора рукой. При хороших технических показателях электродвигателя лампа обязательно зажжётся.

Ветрогенератор в домашнем конструкторском наборе

Итак, можно считать, что выбран генератор — главная деталь системы регенерации энергии ветра. Остаётся добавить:

  • винт на три лопасти,
  • флюгерную систему,
  • мачту металлическую,
  • контроллер заряда АКБ.

Желательно, но не обязательно, соблюсти последовательность производства всех оставшихся частей ветряного генератора. Последовательность – это порядок, который необходим в любом деле для достижения результативности. Очевидно: существенную помощь в строительстве энергетической машины оказывают готовые наборы:

Изготовление лопастей пропеллера

Достаточно лёгким и простым видится изготовление лопастей винта генератора из пластиковой трубы диаметром 150-200 мм.

Для описываемой конструкции домашнего ветрогенератора были сделаны (вырезаны) три лопасти. Материал: 152-миллиметровая сантехническая труба. Длина каждой лопасти – 610 мм.

Лопасти для пропеллера домашнего ветрогенератора. Элементы пропеллера изготовлены из обычной сантехнической трубы, что широко используется в хозяйстве ЖКХ

Сантехническая труба изначально отрезается по размеру длины с небольшим запасом на обработку. Затем отрезанный кусок рассекается по осевой линии на четыре одинаковых части.

Каждая часть вырезается по несложному шаблону рабочей пропеллерной лопасти. Все кромки резов необходимо тщательно зачистить – отполировать для лучшей аэродинамики.

Элементы пропеллера ветрогенератора – пластиковые лопасти, закрепляются на шкиве, собранном из двух отдельных дисков. Шкив насаживается на вал мотора и притягивается винтом.

Та часть ступицы, на которой крепятся лопасти, имеет диаметр 127 мм. Другая часть – шестерня, в диаметре имеет размер 85 мм. Обе детали ступицы не изготавливались специально.

Закреплённые на ступице лопасти винта домашнего ветряка. Собранный из подручных деталей и готовый к установке на домашний ветрогенератор простейший винт

Металлический диск и шестерню удалось найти в старом техническом хламе. Но диск был без отверстия под вал, а шестерня имела малый диаметр. Объединением этих деталей в единое целое удалось решить проблему соотношения массы и диаметра.

После закрепления лопастей, осталось лишь закрыть торец ступицы пластиковым обтекателем (опять же для аэродинамики).

Флюгерная основа ветрогенератора

Обычный деревянный брусок (желательно из твёрдых пород) длиной 600 мм подойдёт для флюгерной основы. На одном конце бруска хомутами закрепляется электродвигатель, на другом монтируется «хвост».

Флюгерная часть установки, куда поставлены двигатель и хвост ветряка. Мотор дополнительно закрепляется хомутами, хвост накладными брусочками

Хвостовая часть сделана из листового алюминия – это вырезанный прямоугольный кусок, который попросту устанавливается между наставными брусочками и скрепляется винтами.

Для улучшения свойств долговечности, деревянный брусок рекомендуется дополнительно обработать пропиткой и покрыть сверху лаком.

На нижней плоскости бруска, на расстоянии 190 мм от заднего торца бруса, через опорный фланец закрепляется трубчатый отвод под соединение с мачтой.

Флюгерная система домашнего ветряка (нижняя её часть), изготовленная из простых доступных деталей. Такие детали найдутся у каждого владельца домашнего хозяйства

Недалеко от точки закрепления фланца, на стенке трубы высверливается отверстие d=10-12 мм под вывод кабеля сквозь трубу от ветрогенератора к накопителю энергии.

Основание и шарнирная мачта

Тогда как уже готова флюгерная часть домашнего ветрогенератора, наступает очередь производства опорной мачты. Домашнюю установку вполне достаточно поднять на высоту 5-7 метров. Металлическая труба d=50 мм (внешний d=57 мм) в самый раз подходит под мачту этого проекта ветрогенератора для дома.

Опорная тарелка под нижнюю часть мачты домашнего ветряка сделана из толстой листовой фанеры (20 мм). Диаметр блина 650 мм. По краям фанерного блина, равномерно по кругу и с отступом 25-30 мм просверлены 4 отверстия d=12 мм.

Нижняя и верхняя части, которые встанут между мачтой. Слева опорная площадка с установленным на поверхности шарнирным механизмом подъёма/спуска ветрогенератора

Эти отверстия предназначены под временное (или постоянное) штыревое крепление на грунт. Для прочности установки фанеру снизу можно усилить стальным листом.

На поверхности опорной тарелки прикреплена конструкция, собранная из металлических сантехнических фланцев, патрубков, уголков и муфты-тройника.

Между уголками и муфтой-тройником резьбовое сочленение выполнено не до конца. Это сделано специально, чтобы получить эффект шарнира. Таким образом, подъём или спуск ветрогенератора можно осуществлять без труда в любой момент.

Подставка под мачту ветряка оснащается четырьмя отверстиями для дополнительного крепления штырями на грунт. Так, примерно, выглядит состояние опорного элемента, когда мачта установлена и поднята

Муфта-тройник центральным отводом соединена с куском трубы, в нижней части которой установлен ограничитель для трубы мачты. Мачтовая труба надевается на трубчатый кусок меньшего диаметра до упора в ограничитель.

Примерно так же соединяется верхняя часть мачты и флюгерная система ветряка. Но там, в качестве ограничителя, внутри мачтовой трубы установлены подшипники.

Крепление мачты растяжками выполняется стандартно с применением обычных хомутов, которые несложно сделать своими руками из листового металла

Так что, для сборки всей мачтовой системы и потребуется, без каких-либо креплений, всего лишь соединить нижнюю и верхнюю части с мачтовой трубой. Затем, благодаря шарнирному устройству поднять ветрогенераторную установку и зафиксировать мачту растяжками.

Удобство шарнирной системы очевидно. К примеру, на случай непогоды ветрогенератор можно быстро «уложить» на землю, сохранив от разрушения и так же быстро установить в рабочее положение.

Домашний ветрогенератор и схема контроллера

Контроль напряжений и токов, снимаемых с генератора домашней ветряной энергетической установки и подаваемых на аккумуляторные батареи, необходим обязательно. Иначе АКБ быстро выйдет из строя.

Причина очевидна: нестабильность зарядного цикла и нарушения параметров зарядки. Или же следует применять, к примеру, новые аква-аккумуляторы, которым не страшны хаотичные циклы, завышенные напряжения и токи.

Функции контроля достигаются сборкой и включением в конструкцию домашнего ветрогенератора простой электронной схемы. Домашние ветряные установки обычно комплектуются относительно простыми схемами.

Принципиальная схема контроллера заряда АКБ ветроэнергетической установки, сборка которой описывается в этой публикации. Минимум электронных компонентов и высокая надёжность

Главное назначение схем – управление реле, переключающего выходы ветрогенератора на аккумуляторную батарею или на балластную нагрузку. Переключение выполняется в зависимости от текущего уровня напряжения на клеммах АКБ.

Традиционная для домашних ветряков схема контроллера применялась и в этом случае. Электронная плата содержит небольшое число электронных компонентов. Схему достаточно просто спаять своими руками в домашних условиях.

Принцип построения обеспечивает зарядку аккумуляторов до момента, пока не будет достигнут граничный предел напряжения на клеммах. Затем реле переключает линию на установленный балласт. Реле нужно брать с контактной группой под высокие токи, не менее 40-60А.

Настройка схемы предполагает регулировку триммеров под установку соответствующих напряжений контрольных точек «А» и «В». Оптимальные значения напряжений в этих точках равны: для «А» — 7,25 вольт; для «В» — 5,9 вольт.

Если схема настроена под такие параметры, аккумуляторная батарея будет отключаться при достижении на клеммах напряжения 14,5 В и вновь подключаться к линии ветрогенератора при напряжении на клеммах 11,8 В.

Структурная электрическая схема домашнего ветряка: А1…А3 — аккумуляторная батарея; В1 — вентилятор; Ф1 — сглаживающий фильтр; Л1…Л3 — лампы накаливания (балласт); Д1…Д3 — мощные диоды

Схемой ветрогенератора предусмотрено управление вентилятором «3» (может использоваться для вентиляции газов АКБ) и альтернативной нагрузкой «4» через силовые транзисторы серии IRF.

Состояние выходов отмечают светодиоды красного и зелёного свечения. Предусмотрена установка ручного управления состоянием контроллера через кнопки «1» и «2».

Особенности подключения системы

Завершая публикацию, следует отметить одну важную особенность. Подключение контроллера (при условии уже работающей турбины) необходимо проводить следующей последовательностью:

  1. Подключить контакты «АКБ» на клеммы аккумулятора.
  2. Подключить контакты ветрогенератора на клеммы реле.

Если такую последовательность не соблюдать, существует высокий риск вывода контроллера из строя.

Установка ветрогенератора 4 кВт — видео гид